
Prime Computer, Inc.

DOC10055-1LA
Advanced Programmer's
Guide
Volume I
BIND and EPFs
Revision 194

Advanced Programmer's
Guide

\blume I
BIND and EPFs

First Edition

James Craig Burley

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.4.2 (Rev. 19.4.2).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

file:///blume

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1985 by
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, MIDASPLUS, Electronic Design
Management System, EEMS, PDMS, PRIMEWAX, Prime Producer 100,
INPO/BASIC, EST 100, PW200, PW150, 2250, 9950, THE PROGRAMMER'S
COMPANION, and PRISAM are trademarks of Prime Computer, Inc.

CREDITS

Project Support

Editorial Support

Graphic Support

Alice Landy
Len Bruns
Margaret Taft

Mary Callaghan

Marjorie Clark
Mike Moyle
Bob Stuart

Production Support Michelle Hoyt

ii

PRINTING HISTORY — Advanced Programmer's Guide, Volume I:
BIND and EPFs

Edition Date Number Software Release

Preliminary January, 1985 DOC9229-1LA
First September, 1985 DOC10055-1LA

In document numbers, L indicates loose-leaf.

19.4.0
19.4.2

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

HCW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price list, and
information on placing orders.

United States Only

Call Prime Telemarketing,
toll free, at 800-343-2533,
Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST)

International

Contact your local Prime
subsidiary or distributor.

i n

2 THE DYNAMIC LINKING MECHANISM

3 THE EPF MECHANISM

Contents

ABOUT THIS BOOK ix

Prime Documentation Conventions x

1 INTRCDUCT1DN TO BIND AND EPFS

What is an EPF?
Why EPFs?

History of Linking Loaders
Under PRIMDS

BIND, the New Linker

1-2
1-4

1-4
1-8

What Is the Dynamic Linking
Mechanism?

What Is a Dynamic Link?
What Happens To a Dynamic

Link?
How Does PRIMDS Snap the Link?
Sample Session
What If the Desired Subroutine

Cannot Be Found?
How Does Dynamic Linking

Relate to Common Blocks?

2-1
2-2

2-2
2-3
2-4

2-6

2-7

EPF Organization
Subroutine Organization
The Life of an EPF
How Multiple Invocations of

an EPF are Handled
How Simultaneous Use of an EPF

Is Handled
How Debugging of an EPF

Is Handled
How Running a Remote EPF

Is Handled

3-2
3-4
3-5

3-34

3-35

3-35

3-36

(

4 EPFS AND STATIC-MDDE APPLICATIONS (

Restriction on the Use of Static-
mode Programs by EPFs 4-2

Restriction on the Use of Static-
mode Libraries by EPFs 4-4

Static Information to Avoid in EPFs 4-7
Effect of EPFs on Existing Shared

Applications 4-8

5 PROGRAM EPFS

What is a Program EPF? 5-1
Writing the Main Program of a

Program EPF 5-4

6 LIBRARY EPFS

What is a Library EPF? 6-2
Steps in Building a Library EPF 6-4
Choosing the Right Type of

Library EPF 6-14
How to Use DBG on a Library EPF 6-30
Entrypoint Search Lists 6-32
Examining Entrypoint Lists 6-38
The Library EPF Mechanism 6-39

7 CODING GUIDELINES FOR EPFS

Writing Modules in High-Level
Languages For EPFs 7-1

Writing Modules in PMA for EPFs 7-2

8 SHARED DATA

How to Define a Shared COMMON Area 8-2
How to Update Shared Information

Atomically 8-7

9 MAPS AND ADDRESSES

Imaginary Vs. Actual Addresses 9-2
Using the LIST__EPF Command 9-3
Using the LISTJSEGMENT Command 9-5
Using the BIND Map 9-5
Using VPSD 9-8 /
n e i n n 4-VIA TTTTMTJ OrpH/T? CrwrrrranA Q—Q V' Using the DUMP_STACK Command 9-9
Using Expanded Listings 9-13

(

VI

10 BINARY EDITORS

L3BEDB 1 0 - 1
EDB 10-2
Examples 10-7

APPENDIXES

CONVERTING PROGRAMS OHAT USE
REGISTER SETTINGS

How the S t a t i c Mode Program works A-2
How t o Achieve This Functional i ty

In an EPF A-3

INDEX X-l

v i i

About
This Book

The Advanced Programmer's Guide is intended for programmers who are
experienced with Prime 50 Series systems, have read the Prime User's
Guide (DOC4130-4IA) and Programmer's Guide to BIND and EPFs
(D0C8691-1LA), are familiar with the Subroutines Reference Guide
(DOC3621-190) and its first update package (UPD3621-31A), are
experienced in at least one high-level language supplied by Prime
(preferably PLl/G or FTN), and have an understanding of the
architecture of Prime systems as described in the Prime 50 Series
Technical Summary (DOC6904-191) and in the System Architecture Guide.

This guide consists of four volumes, and describes:

• Executable Program Formats (EPFs) in Volume I of this series

• The PRDDS File System in Volume II of this series

• The PRIM3S Command Environment in Volume III of this series

• New features for readers of this guide in Volume 0 of this
series

• Standard error codes used by PRIM)S, along with their messages
and meanings, in Volume 0 of this series

Volume 0 also contains information appLicable to all of the other
volumes, such as an explanation of the presentation of the subroutine
calls, general coding guidelines, and the like.

Designed for systems-level programmers, this guide describes the
lowest-level interfaces supported by PRIKDS and its utilities.

IX

(

Higher-level interfaces not described in th i s guide include: V/

• Language-directed I/O

• The applications library (APILIB)

• The sort packages (VSKELI and MSORES)

• Data management packages (such as MPLUSLB and PRISAMLIB)

• Other subroutine packages

All of these higher-level interfaces are described in other manuals,
such as language reference manuals, and the Subroutines Reference
Guide.

This guide documents the low-level interfaces for use by programmers \
and engineers who are designing new products such as language
compilers, data management software, electronic mail subsystems,
ut i l i ty packages, and so on. Such products are themselves higher-level
interfaces, typically used by other products rather than by end users,
and therefore must use some or a l l of the low-level interfaces
described in this guide for best results.

Because of the technical content of the subjects presented in this
guide, i t i s expected that this guide wil l be regularly used only by
project leaders, design engineers, and technical supervisors rather
than by al l programmers on a project. Most of the information in this
guide deals with interfaces to ERIM3S that are typically used only in
small portions of a product, and with overall product design issues
that should be considered before coding begins. Once the product i s
designed and the PRIM3S interfaces are designed and coded, a typical
product can then be written by programmers whose knowledge of these
issues i s minimal. Of course, this statement i s predicated on the
assumption that programmers employ widely accepted programming
practices such as modular, or structured, programming; functional and
design specifications; and thorough unit debugging and testing.

mim D0CDMENTAT3DN OONVEflTMS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples i l lustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase let ters .

Convention

UPPERCASE

lowercase

Abbreviations

underlining
in

examples

Brackets
[1

Braces
{ }

Ellipsis

Parentheses
()

Hyphen

Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
These can be entered in
either uppercase or
lowercase letters.

In command formats, words
in lowercase letters indicate
items for which the user must
substitute a suitable value.

If a command or statement
has an abbreviation, i t i s
indicated by underlining.
In cases where the command
or directive i tself
contains an underscore, the
abbreviation i s shown below
the full name, and the name
and abbreviation are placed
within braces.

In examples, user input
i s underlined but system
prompts and output are not.

Brackets enclose one or
more optional items.
Choose none, one, or
more of these items.

Braces enclose a l i s t
of items. Choose one
and only one of these
items.

An e l l ips i s indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly
as shown.

Wherever a hyphen appears
as the f irst letter of an
option, i t i s a required
part of that option.

Example

SLIST

LOGIN user-id

L0GCOT

SET_QUOTA
SQ

OK, RESUME MY_JPRCG
This i s the output
of My_JROG.CPL
OK,

f -LIST 1
L -CANCEL J

{ filename 1
ALL -• j

item-x [, item-y]. . .

DIM array (row,col)

SPOOL -LIST

xi

1
Introduction to

BIND and EPFs

ttiis volume introduces EPFs (Executable Program Formats) and BIND, the
new utility that creates them. It describes how to create EPPs and
covers, in detail, concepts that apply to all EPPs and information
applicable to two specific types of EPFs, program EPFs and library
EPFs.

Specifically, Volume I of this guide:

• Explains what an EPF is

• Compares EPFs to the previously available method of building
programs under PRBOS

• Explains the dvnamic linking mechanism

• Describes the EPF mechanism

• Explains restrictions on the use of static-mode programs and on
the use of static-mode libraries

• Lists information and subroutines involving static information
that should not be used in EPFs

• Describes the effect EPFs may have on existing static-mode
shared applications

1-1 First Edition

ADVANCED PROGRAMMER1 S GUIDE, VOLUME I: BIND AND EPPS

It is important that you read all of Chapters 1 through 6 to understand
how EPPs affect all aspects of programming on Prime systems from
Rev. 19.4 on. Even if your installation does not intend to use EPPs,
you should be aware of the effect EPPs may have on existing shared
applications used at your installation; this topic is covered in
Chapter 4.

Prior to Rev. 19.4, SEG and LOAD were the only two utilities provided
by Prime that linked programs. As of Rev. 19.4, a new linking utility
named BIND is provided that creates programs using a new program
format, the EPP. Chapter 1 introduces you to BIND and EPFs and
compares the programming environment provided by BIND and EPPs to the
environments provided by the SEG and LOAD utilities.

Other chapters in Volume I explain BIND and EPF concepts in greater
detail:

• Chapter 2 explains the dynamic linking mechanism, which allows a
program to call a subroutine that is not linked in with the
program.

• Chapter 3 explains the EPF mechanism in detail, including
elements of the Prime 50 Series architecture that relate
directly to EPFs.

• Chapter 4 explains the effects that the advent of EPPs have on
existing static-mode applications, even in an installation that
does not switch over to using EPFs.

• Chapters 5 and 6 describe the ways in which program EPPs and the
two classes of library EPFs (program-class and process-class)
are created, and the operational characteristics of each.

• The remaining chapters introduce some coding guidelines that you
should adhere to when programming EPFs, the concept of shared
common data blocks and how to define them, and the use of
linkage maps and the binary editor.

WHAT IS AN EPF?

An EPF is an executable file system object. You, the programmer,
generate an EPF using BIND. An EPF may be used by a user or by another
program. A file containing an EPF has a suffix of either .BUN or .RPn,
where n is a digit (0-9) • The .FUN suffix indicates that the file
contains the latest version of the EPF. The .RPn suffix, if present,
indicates an older version of the EPF; an old version of an EPF is
kept only if at least one user is still using the EPF when the new
version is installed.

First Edition 1-2

INTRODUCTION TO BIND AND EPFS

Types of EPFs

There are two types of EPFs:

• Program EPFs, which contain a program having one entrypoint and
which are invoked by explicitly running the program

• Library EPFs, which contain subroutines having one or more
entrypoints and which are invoked by another program implicitly
by referencing an entrypoint within the library EPF

Program EPFs: A program EPF contains a main entrypoint and related
subroutines that together constitute a single program. A program EPF
is invoked explicitly by issuing the PRIMDS command RESUME, by calling
a subroutine to invoke a program EPF, or by issuing a command that
names a program EPF residing in UFD CMDNCO.

To a programmer, a program EPF is a file containing a program. To a
user, a program EPF is either a PRIMDS command (if the EPF resides in
UFD CMDNCO) or a program invoked via the RESUME command. To a program,
a program EPF is a subroutine, having a standard calling sequence, that
may be invoked by calling one of several PRIMDS subroutines.

Chapter 5 contains detailed information about program EPFs (as distinct
from library EPFs).

Library EPFs: A library EPF contains many subroutines, some (or all)
of which are entrypoints to that library EPF. A library EPF is not
invoked explicitly as is a program EPF; instead, the pathname of the
library EPF is placed in an entrypoint search list (EWERY$.SR) by the
System Aoministrator (for the default system-wide search list
SYSTEM>ENTRY$.SR) or by a user (for a private search list).

The dynamic linking mechanism, described later in this chapter,
connects a library EPF to any program or subroutine that calls an
entrypoint inside the library EPF. When any program or library calls a
subroutine that is not contained within the program, it makes the call
through a faulted Indirect Pointer (IP), also known as a dynamic link.
Upon recognizing the faulted IP, the dynamic linking mechanism in
PRIMDS takes action. First, it searches its own list of internal
entrypoints (internal to PRIMDS). Next, it scans the user's entrypoint
search rules for library EPFs (or the special -STATIC_MDDELLIBRARIES
object), looking for a library that contains the subroutine named by
the faulted IP as an entrypoint.

If the faulted IP identifies, as its target, the name of one of the
entrypoints in a library EPF, PRIMDS connects the library EPF to the
program invoking the subroutine via the faulted IP, allowing the
program to call any of the entrypoints in that library EPF. As further

r faulted IPs are encountered, PRIMDS converts those that identify
subroutines in that library EPF to point to the actual memory addresses
of Entry Control Blocks (ECBs) in that library EPF. (An ECB is the

1-3 First Edition

(

c

ADVANCED PROGRAMPER'S GUIDE, VOLUTE I: BIND AND EPPS

actual target of a subroutine call instruction, as it contains
information on the subroutine such as where it is located, how much
stack space it needs, and where its linkage information is located.)
Subsequent uses of the affected IPs do not cause invocation of the
plynamic linking mechanism; hence, they execute much faster. In fact,
subsequent uses of such converted IPs execute as fast as IPs that were
not faulted in the first place, such as IPs to statically allocated
storage or to storage within the same program containing the IPs.

To a programmer, a library EPF is a collection of related subroutines
that are useful to more than one application. To a user, a library EPF
is nothing more than an entry in the entrypoint search list, with which
many users do not even concern themselves. To a program, a library EPP
appears as a collection of entrypoints to which the program may link
itself by calling them via dynamic links (faulted IPs). However, a
program is not concerned with how entrypoints are distributed among
library EPPs; the programmer who builds a library EPP must concern
himself or herself with the optimal grouping of related entrypoints in
one or more library EPPs.

Chapter 6 contains detailed information about library EPFs (as distinct
from program EPFs).

WHY EPFS?

EPFs are provided as an alternative to static-mode programs, which,
until Rev. 19.4, were the only kind of program supported by PRIfOS.
Static-mode programs are created by the SEG and LORD linking loaders,
while EPFs are created only by the new (at Rev. 19.4) BIND linker.

This section explains the history behind static-mode programs and EPFs,
explains the disadvantages of static-mode programs, and explains the
advantages of EPFs. During this discussion, information i s presented
suggesting how both static-mode programs and EPFs work.

History of Linking Loaders Under PRIEPS

Prior to Rev. 19.4, PRIM3S provided two linking loaders:

• SEG, for linking and loading V-mode and I-mode programs

• LOAD, for linking and loading R-mode programs

These linking loaders are fully described in the SEG and LOAD Reference
Guide.

R-mode programs are limited to 128KB of memory in size. R mode i s
provided for compatibility so that programs written to run on the older (
Prime 100, 200, and 300 systems can run on newer Prime systems without
modification. Such programs cannot take advantage of the large

(

First Edition 1-4

INTRODUCTION TO BIND AND EPFS

segmented memory address space provided by IRIM)S starting with the
Prime 400 system. (There are two submodes of R mode, 32R mode and 64R
mode. They differ only in their ab i l i ty to reference memory.)

V-mode and I-mode programs can take f u l l advantage of the large
segmented memory address space provided by IRIMDS. V-mode and I-mode
differ only in the way instructions are decoded and in the fact that
registers in I mode are organized around a general-purpose register se t
architecture, while V-mode registers retain the special-purpose
register se t architecture inherited from the predecessor of V mode,
which i s R mode. (The predecessor of R mode i s an almost entirely
obsolete mode cal led S mode, which i s used only during the very
ear l ies t phase of system boot and in certain system te s t and
maintenance u t i l i t i e s . S mode consists of two submodes, 16S mode and
32S mode, which, l ike their counterparts in R mode, differ only in
their ab i l i ty to reference memory.)

R-Mode —- Single-Segnent Limit and DELSEG Requirement; Although SBG
links and loads V-mode and5 I-mode programs, pre-Rev. 19.4 ERIfOS
provided no direct way to execute V-mode or I-mode programs; only the
R-mode (or S-mode) program format was supported. The R-mode program
format produces a static-mode program. There are f ive characteristics
of a static-mode program:

I t i s represented in a SAM (Sequential Access Method) f i l e that
consists simply of a representation of the contents of a portion
of segment '4000 when i t contains the program. Nine halfwords
of control information are followed by the memory image i t s e l f ;
the beginning and ending addresses of the memory image are in
the nine halfwords of control information, as i s the starting
address of the program and the i n i t i a l s tate of certain special
R-mode regis ters . No dist inction i s made in the static-mode
image between procedure code, data, and uninit ia l ized memory.

Control Info (RVEC)

Procedure Code
Data
Uninitialized Memory

1-5 First Edition

ADVANCED IROGRAMMER'S GUIDE, VGLUtE I: BIND AND EPFS

It i s always loaded into user segment '4000 by PRIMDS;
therefore, if static-mode program A i s f irst loaded, followed by
static-mode program B, i t i s likely that loading program B wi l l
overwrite part or a l l of program A in memory unless they occupy
completely separate areas in segment 4000. The default method
of loading static-mode programs, however, starts a l l programs at
location '1000 in segment '4000; therefore, static-mode
programs loaded using the default method wi l l invariably
overwrite each other.

(

Segment '4000 Segment '4000

It i s executed by PRIMDS when the user issues the RESUME command
identifying the static-mode program f i l e , which typically has
the suffix .SAVE to identify i t as a static-mode program.
PRIMDS loads the program into segment '4000 and performs a
nonlocal goto to the starting address of the program; the
program i s not treated as a subroutine by PRIMDS.

JMP

First Edition l - €

INTRODUCTION TO BIND AND EPFS

• It terminates execution by calling one of several HRIMDS
subroutines that return the user to FRIMDS command level, rather
than by executing a return as a called subroutine might do.

Segment '4000

CALL /

M
PRIMOSJ

• It can use more than one segment by directly referencing
segments other than segment '4000. However, ERIM3S does not
manage these additional segments. If a program uses five
segnents, then five segments remain allocated to the user when
the program finishes.

In order to free any segments referenced by an R-mode program
(but no longer in use because the program has terminated), the
user must issue appropriate DELSE9G commands to delete the
segments. (The DELSEG command i s described in the HHM3S
Commands Reference Guide.) The additional segnents are also
released when the user logs out.

Due to the design of static-mode programs, one static-mode program
cannot call another static-mode program as i f i t were a subroutine;
the f irst static-mode program must give up control to the second
program entirely, because the second program will destroy part or a l l
of the f irst program.

SEG — R-Mode to Initialize V-Mode or I-Mode; Because the static-mode
mechanism does not handle V-mode or I-mode programs, the SEG loader i s
designed not only to provide the mechanism to link a V-mode or I-mode
program, but also to enable the user to execute the program by typing:

SEG program-name

The SEG program i tse l f i s a static-mode program that loads program-name
into memory (into segments other than segnent '4000, which i s where SEG
resides). Then, SEG sets up the V-mode/I-mode environment and begins
execution of the program.

If a V-mode or I-mode program f i t s within a single segnent, SEG can
generate a static-mode image of the program in segnent '4000 that can

1-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPES
(

then be invoked directly using the RESUME command. However, the (
procedure for building such a program via SEG is complicated and
definitely not intuitive.

SEG for Shared Procedure Segnents; If a V-mode or I-mode program is
larger than a" segment, But Its impure data fits within a single
segment, the program can be shared via SEG. SEG can generate, in
segnent '4000, a static-mode image of the impure portion of the
program, which includes an interlude to the pure portion of the
program; it can also generate static-mode images of the pure portions
of the program in shared system-wide segnents (for example, segnents
2030, 2031, 2032, and so on). The procedure for building a shared
program via SEG is extremely complex and has the following
requirements:

• The System Administrator must coordinate the use of shared \
segments on the system and must assign shared segment numbers to
programs that are to become shared programs.

• At every system coldstart, the shared static-mode segment images
must be loaded into their corresponding shared segments.

• At system coldstart, the shared segnents must be protected
against modification.

• The user must RESUME the image of segnent '4000 generated by SEG ^ ^ S
to run the program.

• To install a new version of the program reliably, the system
must be shut down and restarted. Otherwise, the possibility
exists that a user may be executing the old version of the
program when the new version is installed. This usually results
in unrecoverable errors for that user.

In addition, once a program is shared in system-wide segnents, any user (
can examine or make copies of the pure code, even if that user cannot
access the program itself (which is the impure and startup code
residing in the image of segnent '4000).

(See the SEG and LOAD Reference Guide for complete information on SEG
and LOAD.)

BIND, the New Linker

As of Rev. 19.4, PRIMDS supports a new program type, called an EPF (for
Executable Program Format). To build EPPs, PRIMDS provides a new
linker named BIND. BIND is not a loader, because it does not load the
final linked program into memory; PRIMDS is solely responsible for ,
loading an EPF into memory. \

(

First Edition 1-8

INTRODUCTION TO BIND AND EPFS

r BIND, l ike SEG, can be used t o create only V-mode and I~mode programs,
frequently referred t o as 64V-mode or 321-mode programs.

Using the BIND linker to create EPPs provides the following benefits:

• The BIND linker i s much simpler to use than SEG, and i s even
simpler than LOAD (while providing more capabi l i t i e s) . This
simplicity i s maintained even when large programs are linked via
BIND, because BIND and PRIMOS manage very small and very large
programs in the same way.

• BIND allows external names (subroutine and common area names) to
be a maximum of 32 characters in length; SEG l imits external
names t o 8 characters, and LOAD to 6 characters, both by
truncating external names.

• Two dis t inct types of EPFs are provided, one type to contain
programs (invoked directly by a user) and another type to
contain subroutine l ibraries (invoked implicit ly by any program
tiiat references a subroutine in a l ibrary) . With SEG, building
a l ibrary i s d i f f i cu l t , and i t s invocation must be exp l i c i t l y
performed by any program that wishes t o invoke i t by using an
unusual program load sequence.

• Program EPFs are directly invoked using the RESUME command,
rather than by an intermediate program (as i s sometimes
necessary with the SEG loader).

• A program EPF may be debugged by DBG without having t o use a
different build sequence than that used t o build the production
version of the same program EPF.

• Library EPFs are implicit ly invoked when a program c a l l s a
subroutine in a library EPF; neither the library nor any
subroutine in i t needs to be made physically part of a program
that uses the l ibrary.

• Any user may create h i s or her own personal library EPF and use
that library EPF by placing i t s pathname in the user's
entrypoint search l i s t (a l i s t of l ibraries t o search for
subroutine entrypoints).

• A program EPF i s invoked by PRIMOS as a subroutine, and may
return t o PRIMOS as a subroutine.

• PRIMOS separates memory used for EPFs, called dynamic memory,
from memory used for static-mode programs, called static memory.
Static memory for a user begins in secpent '4000 and extends
upward for the number of static segnents allocated for the user
by EDIT_PROFILE. Dynamic memory for a user begins at or beyond
where static memory ends. Segnents between the last static
segment and the first dynamic segnent for a user are not
accessible.

1-9 First Edition

ADVANCED PRCGRAMNER'S GUIDE, VOLUME I: BIND AND EPFS

Static-mode programs cannot acquire additional dynamic memory in
the same way they acquire additional s t a t i c memory (by simply
referencing i t) ; therefore, EPFs are guaranteed not t o be
corrupted by loading static-mode programs.

While EPFs can use s ta t i c memory, their use of s t a t i c memory
must be managed by the programmer; PRIKDS cannot keep track of
which programs are using s ta t i c memory as i t can for dynamic
memory.

Most memory allocation i s handled entirely by BIND, at program
or l ibrary linking time, or by PRIMDS, at program or l ibrary
invocation time. Memory allocation performed by BIND i s done
entirely within segnents, while PRIM3S performs the task of
finding available segments for the program. So that t h i s may
work, BIND generally does not put actual memory addresses into
an EPF; i t uses imaginary addresses, which identify locations
within the EPF. PRIMDS translates these imaginary addresses
into actual addresses once i t knows where, in memory, i t w i l l
place the EPF. As a result, a particular EPF can execute
properly in segment '4354 at one point in time, and can later
execute properly in segment '4362, without needing t o be
relinked.

A
/

/
/

EPF_PROG.RUN
/

<

Contains
Imaginary

Addresses

K

A
\ / I

X / I
/ \

/ \ I
\1

\

\

\

\

\l

Contains
Actual

Addresses

'4354

'4355

Contains
Actual

Addresses

'4362

First Edition 1-10

IOTKGDOCnDN TO BIND AND EPFS

Because memory allocation i s handled fcy PRIMDS at runtime,
PRIKDS ensures that EPFs do not overlay each other's memory
space; this allows many EPFs to be kept in memory at one time
without resulting in the destruction of data among the EPFs.

A.RUN

4354

B.RUN
4355

'4354

'4355

1-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPES

An EPF separates procedure code that is pure (meaning it is not
modified during program execution), from linkage text, impure
code, and common areas, which are not pure. HUNDS uses this
separation to protect segments containing pure procedure code
against modification by even the program itself, improving the
chances of preventing a programming bug from turning into a
disaster. A segment is used either to contain the procedure
code of, at most, one EPF, or to contain the linkage text and
common areas for many EPFs. A procedure segment may contain
either pure or impure code, but only segnents containing pure
code are shared and protected against writing.

PROG.RUN

Pure
Procedure
Code

Impure Linkage
and Data

4354

£*i Protected
Against
Writing

4367

First Edition 1-12

INTRODDCP]DN TO BIND AND EPFS

FRIMDS also uses the separation of pure and impure code to
automatically share pure code from a particular EPF between each
user on a system that i s using that EPF.

User A User B
'4354

'4367

4354

Copy for
User A

4367

• ERIMDS shares the pure code of an EPF in the per-user (private)
memory of each user who i s using that particular EPF.
Therefore, other users cannot access this shared code unless
they, too, invoke the EPF (implying that they have sufficient
access to do this) .

1-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS
(

Because BIND produces only imaginary addresses t o point t o
locations within an EPF, PRIMDS, when i t shares an EPF among two
or more users, can use different segment numbers for each user
while s t i l l sharing the pure procedure code. For example, an
EPF might reside in segments '4352 and '4357 for user A, while
also residing in segments '4363 and f4366 for user B. In t h i s
case, segnent '4352 for user A and segment '4363 for user B
could correspond t o a single copy of the pure procedure code for
that EPF; one copy of pure procedure code i s therefore known by
two different segnent numbers for two users.

User A
'4352

'4363

'4366

Shared K

- 4 3 5 7 ^ 1 \ X
ZZZZZfS \

M

User B

PROG.RUN

Pure
Procedure
Code

Impure Linkage
and Data

\
\

\
\ !

v
\

Shared

'4352

'4357

'4363

VZZZL

First Edition 1-14

IOTRCBUCnDN TO BIND AND EPFS

• ERIMDS further uses the separation of pure and impure code to
avoid treating segments containing pure code as traditional
virtual memory segnents whose contents must be written out to
the paging disk during paging. Instead, HOMDS can always be
sure of reading pure EPF segments from a single copy of the EPF,
since pure segnents are "locked" against modification, and hence
always up-to-date, This improves performance and uses less
paging disk space.

PROG.RUN

Pure
Procedure
Code

Impure Linkage
and Data

D i s k

d&\

1-15 First Edition

ADVANCED PROGRAMCR'S GUIDE, VOLUME I: BIND AND EPFS

Although PRIMOS automatically shares EPFs between users, new
versions of EPFs can be installed at any time by using the COPY
command to replace an old version. If the old version is still
in use by at least one user, PRIMDS keeps the old version on the
disk, renaming it so that subsequent invocations of the EPF
invoke the new version. A maximum of 10 old versions of an EPF
may be kept in this fashion. Although PRIMDS creates the old
versions, it is up to the owner of the EPF to delete them when
they are no longer in use.

PROG.RPO

User A
(running oldest version)

User B
(running older version)

All other
users run
latest version

An EPP can be removed from memory by issuing the REMDVELEPF
command. All memory associated with the removed EPF that
belongs to the user issuing the command is thereby returned to
the free memory pool. If no other users are using the EPF, this
means that one or more segments, which contained the procedure
code for the EPF, are returned to the system-^wide free segment
pool.

The command line arguments used to invoke a program EPP can be
received by that EPF as an argument to the main entrypoint of
the EPF, due to the symmetric call/return flow of program EPF
invocation by the PRIMDS command environment. Such a program
need not make a special subroutine call to acquire the command
line from the command environment. This feature prevents the
side effect of wiping out any unparsed data on the original
command line by aborting a running program and then typing
START; such side effects can occur with programs that continue
to use RDTK$$ to retrieve the command line token by token.

Users can write their own CPL functions by building program EPFs
that interface with the command processor.

A program EPF can be executed by another program and treated as
a command (which does not return a value) or as a CPL function
(which returns a string value).

First Edition 1-16

INTRODUCTION TO BIND AND EPPS

• A program EPP can be constructed to selectively enable or
disable most forms of command-line preprocessing performed by
PRIMDS, such as wildcards, treewalking, iteration lists, and
name generation.

• A program EPP can obtain information on what kind of command
preprocessing is taking place for the invocation of the EPF.
For example, a program EPF can determine whether it is being
invoked with a wildcard specification, even though what it
receives as a command line argument is an objectname without
wildcards; if wildcarding is being used, the program may wish
to alter its output display to suit a list of file system
objects,

• Program EPFs can be stacked on the command processor stack,
allowing you to invoke- program A, suspend it (via Control-P for
example), invoke program B, and then, when program B finishes,
use the ST2RT command to continue execution of program A at the
point at which you suspended it. This same mechanism applies
when program A is suspended as a result of a programming error
(such as a memory access violation or use of an illegal segnent
number), allowing easier program debugging by using more
advanced debugging techniques.

B.RUN

Command Processor Level 2

A.RUN

Command Processor Level 1

1-17 First Edition

ADVANCED PROGRAMMES GUIDE, VOLUME I : BIND AND EPFS

• PRIMOS maintains an EPF cache for each user. Terminated program
EPFs are not immediately removed from memory, but instead are
Placed in the EPF cache. A subsequent invocation of a program
EPF that i s in the EPF cache results in faster startup time for
that EPF, because most of the initialization of the EPF has
already been completed. PRIMOS keeps the EPF cache from
overloading system resources by removing older EPFs from the
cache (and also from memory) as new EPFs are invoked.

• An EPF contains not only procedure code and linkage information,
but general information on the EPF itself , including:

- The version of BIND that was used to link the EPF

- The date and time the EPF was linked via BIND

- The name of the program, which may be different from the
name of the f i l e containing the program

- The version of the program, as assigned by the programmer
during the BIND session

- A comment pertaining to the program, as assigned by the
programmer during the BIND session; for example, a
copyright notice

• Debugging of an EPF that i s in production mode i s easier; after
an EPF i s suspended, due to a user quit or some error, you can:

- Use the LIST_EPF command to determine where in memory the
EPF i s located

- Use the DUMP_J5TACK command to display the stack history
of the EPF and the PRIM3S command environment

- Use BIND, which i tself i s an EPF, either to display a map
of the EPF at the terminal or to write one into a f i l e by
typing:

BIND -D3AD EPF-filename -MAP [map-filename] -QUIT

(With SEG and LOAD, you cannot generate a map of the
program without destroying part or a l l of the in-memory
copy of the suspended program.)

Use VPSD, which remains a static-mode program, to examine
the EPF in memory. VPSD does not overwrite your EPF as
i t may static-mode programs; you no longer have to
consider whether to use VPSD or VPSD16. Note, however,
that you cannot place brealqpoints in the procedure code v ***\
of either a library EPF or of a program EPF that has been
invoked via RESUME, because the pure procedure code i s

First Edition 1-18

1

INTRODUCTION TO BIND AND EPFS

protected against writing. (Use the VPSD subcommand of
DBG if you wish to place breakpoints in the procedure
code of an EPF with VPSD.)

- Use other commands, such as ED, SPOOL, and so on, without
disturbing the in-memory cojy of the EPF or the stack
history of the EPF. After invoking static-mode programs,
you must issue the RELEASE__LEVEL command (abbreviated
RLS) once to prevent a subsequent START command from
returning you to the static-^mode program rather than your
EPF. However, avoid issuing commands such as
RELEASE_JLEVEL -ALL and INrTIALIZELODMMAND_JNVIRCNMENT
(abbreviated ICE), as these delete stack history and, in
the case of ICE, remove EPFs from memory.

• The detection of uninitialized variables is improved because,
unlike SEG, BIND and PRIMDS do not initialize uninitialized
static data to all zeroes for EPFs. While this may produce the
undesirable effect of a working program failing when converting
from using SEG to using BIND, it does significantly improve the
chances of the programmer detecting cases of uninitialized
variables when a program is built as an EPF. When such a
program does not depend on default initialization to zeroes, it
is more portable in that it can be ported to hosts whose own
operating systems do not provide default initialization.

As you read on in this volume, particularly Chapters 2 through 6, you
may discover additional benefits of using BIND to create EPFs. For
information on features provided fcy EPFs when interacting with the
PRIMDS command environment, see Volume III of this series.

1-19 First Edition

2
The Dynamic Linking

Mechanism

This chapter explains the concepts of the dynamic linking mechanism,
and details i t s operation. Because this mechanism i s used by a l l
programs and libraries, a l l readers of this guide should understand how
i t operates. A thorough understanding of dynamic linking on Prime
systems improves one's ability to solve product design and packaging
problems while i t simplifies the debugging of errant programs.

WHAT IS THE DYNAMIC LINKING EECHfiNISM?

The dynamic linking mechanism in HRIMDS allows a program to cal l
subroutines that are not linked in with the program itself , but which
are located in one of several libraries when the program i s run. Tftie
advantages of placing subroutines in libraries that are connected by
the dynamic linking mechanism, rather than binding them into each
program that uses them, are:

• Less disk space i s wasted because only one copy of the
subroutine exists on a system, rather than having a copy in
every program that uses the subroutine.

• Less memory i s needed when two or more users are running
programs that use the same subroutine, because the subroutine i s
automatically shared between users.

• New versions of the subroutine can be easily installed, as long
as they are compatible with previous versions, without having to
relink a l l programs that use the subroutine.

2-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

(

Internal privileged PRIMDS subroutines, which execute in ring 0,
can be accessed via the dynamic linking mechanism if they are
entrypoints into PRIMDS; special-purpose supervisor call
instructions need not be used.

•fliere are three general types of subroutine libraries in PRIMDS:

• PRIMDS-resident libraries, containing subroutines that are
internal to PRIMDS.

• Library EPFs, supplied by Prime or by vendors, or user-written;
these are described in Chapter 6.

• Static-mode shared libraries, supplied only by Prime.

The dynamic linking mechanism allows access to specific subroutines,
called entrypoints, in these three types of libraries. Although a
particular library may have several subroutines, a subset of tiiese
subroutines may be declared by the library as entrypoints; only
entrypoints may be called by programs that reside outside the library
itself.

WHAT IS A DYNAMIC LINK?

The crux of the dynamic linking mechanism is tiie dynamic link, also
called a DENT (pronounced "dint"). In place of a normal pointer to the
ECB of a subroutine, a dynamic link consists of a special pointer,
called a faulted IP (Indirect Pointer), that points to the name of an
entrypointl The dynamic link serves as a placeholder for a subroutine
until that subroutine is located and connected to the program; it
contains the name of the subroutine.

DYNT SUBR

PCL SUBRIP,*

SUBRIP

i 1 segno

offset

'SUBR'

(faulted IP)

WHAT HAPPENS TO A DYNAMIC LINK?

When a progrsni is run, it attempts to use faulted IPs when calling
subroutines external to the program. Each time a faulted IP is
encountered, a fault condition results; this causes PRIMDS to call its
dynamic linking mechanism to resolve the fault condition.

First Edition 2-2

THE DYNAMIC LINKING MECHANISM

The dynamic linking mechanism examines the faulted IP, determines that
it is part of a dynamic link, and begins a complex process that
culminates in the determination of the actual IP of the ECB of the
target subroutine. IRIMDS then replaces the faulted IP with the actual
IP; this is called snapping the link. At this point, PRIMDS resets
the fault condition and continues the program. The instruction that
caused the fault by referencing the faulted IP is executed again, and
it succeeds: the target subroutine is called.

DYNT SUBR SUBR procedure

POL SUBRIP,*
0

SUBRIP

segno

offset

(actual IP)
— •

'SUBR'

SUBR ECB

1—>-

SUBR linkage

—*•

HOW DDES PRIMDS SNAP THE LINK?

To determine the name of the target subroutine, PRIMDS modifies the
faulted IP so that it is a normal IP by resetting the Fault bit in the
IP. (PRIMDS does this to a temporary copy of the IP, not the copy in
memory that caused the fault.) Then, PRIMDS uses the resulting IP to
read, from memory, the name of the target subroutine. (The name is
stored in CHARACTER VARYING format.)

Once PRIMDS has the name of the target subroutine, it searches through
its list of libraries (all three types) for a library that declares
that name as an entrypoint. When PRIMDS finds the first such library,
PRIMDS performs whatever initialization of that library is needed (such
as initializing ECBs, IPs, static data, and so on). Then, PRIMDS
determines the actual address of the ECB of the target subroutine
within that library and replaces the faulted IP with that actual
address.

2-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS ,

SAMPLE SESSION {

The following annotated sample session i l l u s t r a t e s the e f fec t s of the
dynamic l ink ing mechanism. A program named LINKIT i s wr i t t en which
f i r s t s leeps for ten seconds and then c a l l s the T1CU subrout ine. The
ten-second s leep allows the user t o type CDNTRGL-P before the T10U
subroutine i s ca l l ed ; the user can then examine (via VPSD) the faul ted
IP t h a t w i l l be used t o c a l l T10U, and can a l so examine the name of the
t a rge t subroutine (the T10CJ DYNT).

The user then terminates VPSD, types ST7IRT t o continue execution of
LINKIT, and wai ts for the program t o f in i sh . After the program
f in i shes , the user examines the IP again and sees t h a t i t i s no longer
faul ted, but instead points i n t o the linkage area for the l i b r a r y EPF
named SYSTEMJLIBRARY, as shown by an ensuing LISTJEPF command. (The IP
points i n t o the linkage area ra ther than the procedure area because a
resolved IP t o a subroutine points t o the ECB of t h a t subroutine? the
ECB i t s e l f ac tual ly points t o the f i r s t executable i n s t ruc t ion of the
subroutine.)

OK, ED
INPUT

SUBROUTINE LINKIT
CALL SLEEP?(010000) / * SLEEP FOR 10 SECONDS
CALL TlOU(:207) / * RBE THE BELL
RETURN
END

(CR)
EDIT
FILE LINKIT. FTN
OK, FTN LINKIT -DYNM -DCL
0000 ERRORS [<LINKIT>FTN-REV19.3]
OK, BIND -LOAD LINKIT -LIBRARY
[BIND rev 19.4]
BIND COMPLETE
OK, INTTIALIZEjOQMMfiND̂ JMVIRONMENT (cleans up environment)
OK, RESUME LINKIT
(user types Control-P a f t e r a few seconds elapse)
QUIT.
OK, LIST_EPF -DETAIL (shows placement of program in memory)

1 Program EPF.

(active) <USRDSK>UN3ER>LINKIT.RUN
1 procedure segment: -K):4340
1 linkage area: -2:4377(3)/70
bind version: 19.4
date of binding: 84-11-13.16:38:40.Tue
program name: LINKIT
user version: (none)
comment : (none)
debug segnents: 1
command options: widerd, trwlk, iter file,dir,segdir,acat 1

First Edition 2-4

TflE DYNAMIC LINKING MECHMISM

OK, VESD (use the symbolic debugger t o examine memory)

$SN 4340 (the procedure segnent)

$A 1000 ;S (EPFs typ ica l ly s tar t a t o f f s e t '1000; see map)
4340/1000 PCL% IB%+ 422,* (CR) (the SLEEP$ c a l l)
4340/ 1002 AP 1012,SL (CR)
4340/ 1004 PCL% IB%+ 424,* (CR) (the T1CU ca l l)
4340/ 1006 AP IB%+ 400,SL (CR)
4340/ 1010 PRTN L
$LB 4377 70-400 (linkage references are o f f s e t by MOO)
$A LB%+424:0 (access the faulted IP)
4377 /114 104340 (CR) (the fau l t b i t i s the 1 in 104340)
4377/ 115 1014 L
$SN 4340 (se lec t the segment, without the f a u l t b i t)
$A 1014
4340/ 1014 4 jA (name of DYNT is four characters long)
4340/ 1015 Tl (CR) (name of DYNT is TlOU)
4340/ 1016 00 jT~~
&
OK, RELEASE_LEVEL (release the static-mode VESD invocation)
S t a t i c mode program released, (r ls)
OK, START (continue the suspended invocation of LINKIT)
(be l l rings)
OK, VESD (reenter VESD)

$LB 4377 70-400 (set up LB again)

$A LB%+424:0 (access the same place in memory)
4377 /114 4377 (CR) (IP now points t o 4377/16304)
4377/ 115 16304/r"^

$2

OK, LISTLEPF -DETAIL -BO-WATT (check for library EPF)

1 Process-Class Library EPF.

(active) <SYSDSK>LIBRARIES*>SYSTEMJiIBRARy.RUN
2 procedure segnents: +0:4342 +2:4343
2 linkage areas: -2:4376(0)/0 -4:4377(3)/1134
bind version: 19.4
date of binding: 84-10-25.16:17:20.Thu
program name: SYSTEflLLIBRARY
user version: (none)
comment : Copyright (C) 1983, Prime Computer, Inc . ,

Natick, Ma. 01760 Al l r ights reserved
debug segnents: 2

1 Program EPF.

2-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUJE I : BIND AND EPFS ,

(not active) <USRDSK>UN3ER>LINKIT.RUN (
1 procedure segment: 40:4340 K/m%
1 linkage area: -2:4377(3)/70 J

bind version: 19.4
date of binding: 84-11-13.16:38:40.Tue
program name: LINKCT
user version: (none)
comment : (none)
debug segnents: 1
command options: wldcrd, trwlk, iter file,dir,segdir,acat 1

OK,

WHAT IF THE DESIRED SUBROUTINE CANNOT BE FOUND?

Dynamic l inks , also referred to as faulted IPs, are resolved as the
program runs. They are resolved t o point t o one of the three types of
l ibraries discussed previously. If none of the l ibraries known t o
PRIMDS l i s t s a particular subroutine as an entrypoint, PRIMDS signals
the error condition LINKAGEJEAULT$. Unless intercepted by a program,
the condition results in a display similar to the following:

Error: condition "LINKAGE_£AULT$B raised a t 4243(3)A031.
Entry name "INnLIjINEn not found while attempting t o resolve
dynamic link from procedure nTRY_JASTffilCn .
ER1

Here, INHLJJNE i s the target subroutine that i s not known t o PRIMDS,
4242/1031 i s the address of the instruction that referenced a faulted
IP for INnLJilNE, and TRTCĵ syNC i s the name of the procedure making the
reference.

Note

PRIMDS i s not always able to determine the name of the
procedure making the reference that produces the linkage fault
error. For example, procedures compiled in FTN do not identify
themselves t o PRIMDS; therefore, PRIMDS produces a shorter
message. For example:

Error: condition "LiENKAGELFAUMS'' raised a t 4347(3)/10246.
Entry name "GETLIN" not found.
ER!

(/*%

(

First Edition 2-6

THE DYNAMIC LINKING MECHANISM

HOW DOES DYNAMIC LINKING RELATE TO OOMM3N BLOCKS?

PRIMDS does not support dynamic linking to common blocks; dynamic
linking to subroutines only is supported. The BIND subcommand
ENTRYNAME -ALL applies only to subroutines; ENTRYNAME -ALL does not
declare common areas in a library EPF as externally available
entrypoints.

Caution

Do not explicitly name a common area in a DYNT or ENTRYNAME
subcommand in BIND, or you may encounter unexpected results.

2-7 First Edition

3
The EPF Mechanism

This chapter describes the EPP mechanism itself. You should read this
chapter if you want to more thoroughly understand how EPPs are handled
by PRIM5S.

There are three general areas with which the EPF mechanism is
concerned:

• Memory allocation

• Subroutine linkage

• Data initialization

In terms of these three general areas, this section describes:

• The organization of an EPF

• The organization or subroutines on Prime systems

• The life of an EPF

• How multiple invocations of an EPF are handled

• How simultaneous use of an EPF by two or more users is handled

• How to debug an EPF using DBG

• How invocation of a remote EPF is handled

3-1 First Edition

ADVANCED PRCGRAMSER'S GUIDE, VCLUJE I: BIND AND EPFS

EPF ORGANIZATION

A running EPF i s organized into f ive basic sections:

• Procedure text

• Linkage text

• Stack space

• Dynamically allocated memory (optional)

• Debugger text (optional)

Not all of the information in these five sections exists before the EPF
is invoked. The file containing an EPF, named program.BUN or
program. RPn, contains only the following information:

• Procedure code

• Linkage text initialization information

• Stack allocation information (included in linkage text)

• Debugger text

Procedure Code

The procedure code for an EPF is the most stable aspect of an EPF.
Once a procedure is compiled or assembled, the contents of the
procedure code are set. Once an EPF is linked by BIND, the pure
procedure segnents of that EPF are set and are not changed. An EPF may
also have impure procedure segments; the contents of an impure
procedure segnent may be changed by PRIMDS or by the program itself as
it runs. Typically, a procedure segnent is impure because it contains (
linkage data (such as ECBs or IPs), although it may be impure because
the code actually modifies itself as it executes.

Linkage Text

The linkage text for an EPF is the most complex aspect of an EPF.
Linkage text includes:

• Program data

• ECBs for subroutines

• Links between subroutines

• Links to common data areas (•"*%

• Common data areas
(

First Edition 3-2

THE EPF MECHANISM

The final content for this information is determined at different
points in time during the life of an EPF, depending upon the nature of
the information. Because all of this information resides in the impure
part of an EPF, and most of it resides in the Linkage text of an EPF,
various portions of the linkage text of an EPF are finalized at
different points in time during the life of that EPF. Therefore, the
file containing an EPF rarely contains the final content of the linkage
text; instead, it contains a combination of final information and
information on how other portions of the linkage text are to be
initialized.

Although common data areas are, themselves, not part of the linkage for
any particular procedure, BIND places them in the linkage portion of an
EPF along with the linkage text.

Stack Space

As noted, the stack allocation information is stored in the linkage
text. Stack is allocated automatically during the invocation of a
subroutine via the PCL (Procedure Call) instruction; the ECB for a
subroutine includes the amount of stack space to be allocated each time
the subroutine is called. Therefore, stack allocation is performed
each time a subroutine is called.

Dynamically Allocated Memory

Dynamically allocated memory is acquired during program execution as a
result of explicit requests by the procedure code of the program.

Because both stack storage and dynamically allocated memory are
acquired during program execution, the file containing an EPF does not
specify initial values for data within those areas. In fact, data in
stack storage or in dynamic storage must be initialized during program
execution.

Debugger Information

Information provided via the -DEBUS option of most Prime-supplied
compilers i s also kept in an EPF. D3G alone uses this information
during the debugging of an EPF. You do not need to be concerned with
the nature of this information, as long as you understand that i t i s
passed from the compilers to BIND via object (,BIN) f i l es , and from
BIND to DBG via the EPF.

3-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

SUBROUTINE ORGANIZATION

The Prime 50 Series a rch i tec ture defines a subroutine, or procedure, as
consisting of:

• Procedure code

• Linkage text

• Stack space

• An Entry Control Block (ECB) that contains information on the
above three elements

A particular procedure is said to consist of a procedure frame, a link
frame, and a stack frame, which correspond to the terms listed above.

Management of the elements of a procedure is handled at runtime by the
PCL and PRTN instructions. To call a procedure, a PCL instruction that
addresses, as its target, the ECB of the desired procedure, is
executed. The PCL instruction analyzes the ECB for the procedure being
called, allocates a stack frame, and handles the transfer of arguments
between the procedures. Before the PCL instruction completes, it sets
up three base registers (PB for Procedure Base, LB for Linkage Base,
and SB for Stack Base) pointing to the three frames listed above.
These base registers are used ty the procedure being called during its
execution to execute instructions and access data in its linkage and
stack areas.

A procedure therefore consists of only one copy of its procedure code
and link frame, whereas it has any number of stack frames, depending
upon the number of active invocations of that procedure. The EPF
mechanism, however, provides a method for maintaining more than one
copy of the link frames for an entire EPF when appropriate. Each
separate invocation of a program EPF is given its own cor# of its link
frames by the EPF mechanism; similarly, each use of a program-class
library EPF by a separate program invocation is given its own copy of
its link frames. (See Chapter 6 for information on library EPFs.)

At the beginning of each stack frame is a stack header that contains
the information needed to identify the owning procedure and also the
information needed to return to the calling procedure. The stack
header may also contain information on conditions and on-units to be
invoked; this information is defined and set up fcy software on the
Prime 50 Series systems.

When the called procedure is finished, it executes the PRTN
instruction. The PRTN instruction deallocates the stack frame used by
the procedure, resets the three base registers to their original values
(before execution of the matching PCL instruction), and returns control
to the calling procedure at the instruction following the PCL
instruction (and its argument list, if any).

First Edition 3-4

(

THE EPF MECHANISM

Typically, the linkage information for a procedure also contains the
ECB for that procedure. It may seem strange that the ECB for a
procedure not only identifies the address of the link frame of that
procedure but also resides in the same link frame. It is the calling
procedure that must address the ECB of the target procedure; the
calling procedure does this by specifying an indirect pointer, or IP,
that resides in its own link frame. This IP is set by either BIND or
PRIMDS to point to the target ECB. Because an IP is a full address,
rather than an address relative to the PB, IB, or SB base registers,
the ECB may reside in the link frame of the target procedure.

General information on the procedure call mechanism is found in the
Prime 50 Series Technical Summary. Details of the procedure call
mechanism, including formats of the ECB and stack frame, are found in
the System Architecture Reference Guide.

THE LIFE OF AN EPF

In the following discussion, the life of an EPF is presented as a
series of phases through which an EPF passes from generation by the
programmer, through invocation by a user or program, through
termination, to removal from memory. Each of the above three areas is
touched upon during the description of the phases.

In very general terms, the life of an EPF can be seen as progressing
through five stages:

1. Generation by the programmer

2. Invocation (by a user or by a program)

3. Preparation by PRIMDS

4. Execution

5. Removal by PRIMDS

Each of these stages consists of one or more phases that, when put
together, constitute a complex series of steps in the life of an EPF.
Seme of these phases differ in meaning between types of EPFs. For
example, a program EPF is invoked directly by a user or program,
whereas a library EPF is invoked as a result of a call to one of its
entrypoints by another running program.

Prime-supplied text editors and compilers, the Prime Macro Assembler
(PMA), and the BIND linker perform the activities that constitute Stage
1 at the direction of the programmer. After Stage 1, the EPF is in the
hands of its users and is operated on by PRIMDS.

As described in Volume III of this series, there are many
PRIMDS-suppiied subroutines that operate on an EPF. One subroutine,
EPFSRUN, performs all of the tasks needed to invoke a program EPF.

3-5 First Edition

ADVANCED PROGRAMER1 S GUIDE, VOLUTE I: BIND AND EPFS

Invocation of an EPF, whether by EPF$RDN (for a program EPF) or by
calling one of its entrypoints (for a library EPF), is Stage 2 in the
above list.

EPF$KUN performs its tasks hy calling other EPF$ subroutines to prepare
the EPF for execution (Stage 3), to execute the EPF (Stage 4), and to
remove the EPF from memory (Stage 5).

All five stages apply equally for both types of EPFs. Library EPFs,
however, are not executed in the same way as program EPFs; instead,
the subroutines they contain are executed as the calling program
invokes them.

The other EPF$ subroutines called by EPF$RDN are called for every EPF
run by PRIM3S. The exception is the EPF$INVK subroutine, which invokes
a program EPF.

To describe the EPF mechanism faithfully, only those phases that are
generally common to both program EPFs and library EPFs are presented
here. Where appropriate, each step is correlated with the appropriate
EPF$ subroutine. Chapter 6 describes aspects of the mechanism specific
to library EPFs; Volume III of this series describes the EPF$
subroutines, including EPF$RUN, in detail.

There are ten phases of activity during the life of an EPF:

1. The procedures that are to constitute the EPF are compiled or
assembled, generating object files (.BIN files).

2. These object files are linked using BIND, generating an EPF.

3. The EPF is invoked by either a user or a running program
(EPF$RUN or the dynamic linking mechanism).

4. The procedure (pure) portion of the EPF is mapped to memory
(EPF$MAP).

5. The linkage (impure) portion of the EPF is allocated
(EPF$ALLC).

6. The linkage (impure) portion of the EPF is initialized
(EPF$INIT).

7. The EPF entrypoint is invoked (EPF$INVK or the dynamic linking
mechanism).

8. Dynamic links encountered within the EPF are snapped.

9. The EPF terminates, returning to its caller.

10. The EPF is removed from memory (EPF$DEL).

The remainder of this chapter describes these phases in detail.

First Edition 3-6

(

THE EPF MECHANISM

Phase 1 - Compiling or Assembling

The source code of the program or library speci f ies the exact contents
of the procedure text and the desired contents of the linkage text .
The purpose of this phase i s to generate an object f i l e containing this
information in a form that i s independent of the language used in the
source code.

Procedure text includes instructions and often includes constants used
during execution of the procedure. Linkage text includes:

• Static data, which can be initialized when the program i s
invoked (via FOREMAN DATA statement or PL1/G STATIC INITIAL
attributes)

• The ECB for the procedure and an BOB for each alternate
entrypoint and for each internal procedure

• External linkage information, such as pointers to external
procedures or to common areas

Static data values are known during this phase. Most of the data in an
ECB are known during this phase except for the actual location of the
procedure frame and the linkage frame for the procedure. The data for
external linkage information are not known during this phase.

r Data that are not known during this phase are described using alternate
methods. For example, the statement CALL S0BR1 might reference an
external procedure named SUBRl. The external linkage information
indicates a requirement for an IP (Indirect Pointer) to SOBRl at a
certain location in the link frame. Either BIND or PRIMDS sets the
data value of the IP. The procedure code, which i s known during this
phase, includes a PCL instruction referencing the location of the IP in
the link frame as an indirect reference. Figure 3-1 illustrates
linkage information as i t exists in a single object (.BIN) f i l e .

In Figure 3-1, the procedure SUBR1 references s ix external symbols:
SDBR2, G0MN1, O0MN2, SRCH$$, CLOS$A, and SPOCL$. Figure 3-2
illustrates linkage information for the three object f i l e s , including
SUBR1.BIN, that wi l l be used to build a program EPF.

Phase 2 - Linking

Object files are linked together using BIND during this phase. BIND
maintains a list of procedure (PROC, or pure) segments and linkage
(DATA, or impure) segments needed to represent the resulting program.
The purpose of this phase is to produce an EPF file that contains the
PROC, IMPURE, and DATA segnents needed to run the program or library.
Also, debugger information is written to the EPF file when this
information is provided in the object files.

3-7 First Edition

ADVANCED ERCGRAMBER'S GUIDE, VCLUNE I : BIND AND EPPS

(

•ENT SUBR1

EXT IP STJBR2
EXT IP 00MN1
EXT IP COMITS
EXT IP SBCH$$
EXT IF CLOS$A
EXT IP SPOOLS

^*^\

SUBR1.BIN

ENT is an externally available name declaration
EXT IP is an external (unresolved) Indirect Pointer

Linkage Information in a Single Object File
Figure 3-1

First Edition 3-8

THE EPF MECfflWISM

i-H

fe
3
o
o
&
Ei
X
W

02
&
a o
o
p«

EH

M

1

«
&
o
Hi
o
&
Ei
M
H

z
3
si
m z>
CO

M <-« 02 2 1 <J « *
pjj a a w CQ o
m a 3 o o o
P O O fi HH Pi
CO o o CO o CQ
Pi Pi p< Pi pi Pi
M M HI M M HI
EH EH EH EH EH E H

M K « M M M
H pq n pq w pq

J CD

C
CO

B B § §
CQ CQ CQ O

z
ffi

DC
ft.

Linkage Information in Three Object Files
Figure 3-2

3-9 First Edition

ADVANCED PROGRAMSER'S GOIDE, VOLUflE I: BIND AND EPFS

The procedure code from the linked object files is collected into one
or more PROC and IMPURE segments. Link frames from these object files
are collected into one or more DATA segments. Common areas referenced
(and optionally initialized) by these files are also placed in DATA
segments.

While collecting link frames, BIND maintains a list of external symbols
and their placement in the program so that it can resolve some of the
references in the link frames.

For example, if the CALL SUBRl statement exists in a program named
EROG, and the BIND session to create PROG.RUN links SUBRl in with it,
BIND resolves the IP to SUBRl in the link frame of PROG to point to the
SUBRl ECB in the linkage text of SUBRl.

However, in most cases, BIND cannot resolve IPs to the actual memory
addresses. Each time an EPF is invoked, PRIMDS dynamically allocates
memory for the linkage text of the program. Therefore, BIND does not
know the actual memory address of the linkage text of SUBRl, and
therefore cannot compute the actual memory address of the SUBRl ECB.

Instead, BIND leaves the task of determining actual memory addresses to
PRIMDS. BIND identifies all IPs and ECBs that must be adjusted at
program runtime fcy PRIMDS. In the meantime, BIND uses imaginary memory
addresses. An imaginary address identifies a location within a
particular EPF. When an EPF is invoked, PRIMDS maps the EPF into
virtual memory and maintains a table indicating the mapping between
imaginary and actual addresses.

In our example, therefore, BIND might put the linkage text for SUBRl at
imaginary address -0002/60. (Due to the architecture of Prime 50
Series computers, linkage text starts at octal 400 halfwords beyond the
address in the base register that identifies linkage text for a
procedure. Therefore, if linkage text is at -0002/60, the address used
fcy BIND must be -0002/177460, because 60 minus 400, in octal and using
16-bit unsigned halfword arithmetic, is 177460.)

If the ECB for SUBRl begins at octal 120 halfwords beyond the start of
the linkage text, then the imaginary address for the ECB is -0002/200.
BIND places -0002/200 in the linkage text location for the IP needed fcy
PROG when it calls SUBRl so that it uses the SUBRl ECB as its target.
BIND also places -0002/177460, the offset start of the SUBRl linkage
text, into the appropriate portion of the SUBRl ECB. In both cases,
BIND identifies that it has used imaginary addresses in the file
containing the EPF, so that when the EPF is invoked, PRIMDS knows to
modify these addresses.

BIND uses segment numbers +0, +2, +4, +6, +10, +12, and so on to
indicate imaginary addresses identifying pure procedure (PROC)
segments. BIND uses segment numbers -2, -4, -6, -10, -12, -14, and so
on to indicate imaginary addresses identifying linkage (DATA) segments
or impure procedure (IMPURE) segnents. For more information on
imaginary addresses vs. actual addresses, see Chapter 9.

First Edition 3-10

THE EPF MECHANISM

Figure 3-3 illustrates the resolution of some of tiie external symbol
references made by the three object files after BIND is invoked and the
three files are linked via the LOAD subcommand.

As illustrated in Figure 3-3, external references to SUBRl and SUBR2
have been resolved to the extent that their placement relative to the
start of the EPF itself is known. There is only one way to produce
actual memory addresses in BIND, and that is fcy using the SYMBOL
subcommand.

When you use the SYMBOL subcommand to tell BIND exactly where an
external symbol is located in memory, BIND does not use an imaginary
address. Instead, it replaces all of the program's unresolved IPs that
reference the external symbol with the actual address you specified
using the SYMBOL command. Because use of the SYMBOL command requires
you to manage actual memory, its use is generally confined to
specifying shared common areas, as described in Chapter 8.

The SYMBOL subcommand may also be used to specify a common area in
static per-user memory. Figure 3-4 illustrates this use of the SYMBOL
subcommand.

In Figure 3-4, the SYMBOL subcommand is used to specify that the common
area named COMN2 is placed at address 4001/0, which is in static
per-user memory. BIND therefore fully resolves all external references
to COMN2 to actual memory addresses.

Note

Common areas that are placed by the SYMBOL subcommand of BIND
are not initialized by BIND during program linking or by PRIMDS
when the program is invoked. Either the program must
initialize the common area at runtime, or it must be
preinitialized by another program (as is often the case when
shared memory is involved).

External references still unresolved include references to SRCH$$,
CLOS$A, and SPO0L$. These are Prime-supplied subroutines that reside
in libraries. These references are resolved when the libraries are
linked via the LIBRARY subcommand of BIND. However, they are resolved
only to the extent that they are identified as dynamic entrypoints,
also known as dynamic links. IPs to these subroutines are converted to
faulted IPs by BIND, as illustrated in Figure 3-5.

A faulted IP has a bit, called the fault bit, set to 1. This causes a
hardware fault to take place whenever the IP is referenced as an
indirect pointer, as described in Chapter 2. With the fault bit in the
IP reset to 0, the IP points to a DYNT that names the desired
subroutine. Because this name is in the PROC code of an EPF, BIND must
use an imaginary address in the faulted IP as it does for other
addresses not set using the SYMBOL subcommand.

3-11 First Edition

ADVMCED PROGRAMtER'S GUIDE, VCLUffE I : BIND AND EPFS

•~\
to
9 o o
PH
1-1

EH

X
w

oz
fe
a o o
PH
M

H
M
w

)

<*
«•
o
K)

o
ft
M

EH

X
W

M rH C2 J!
P3 S S a
m S S o
p o o p ?
03 o o oa

o o
PH
0Q

PH PH PH PH

H f H EH E<

X X X X X
H H S H H

J

Q
Z
ffl

PH

EH

to

•

f-H

PH

m P
03

PH
M

£ W ra
m o o
P rt d 00 03 O

PH PH PH
l- i l-C I H

tn EH EH

B x W
pq H H

)

Z
OQ
—̂ QC
m 3
W
Q
<
o _ l

z
ffl
o
o AC
a
a <
o - 1

Urn
<D

H->
C

o Q.

CO
(0
a> w
•a •o co
cb
CO
c

(0
b
c
(0
CO

Q_
/—
C
jVj
u,

After Linking (Loading) Three Object Files in BIND
Figure 3-3

First Edition 3-12

SYMBOL COMN2 4001/0

-*-ENT PROG

•L

H
ft

8
o
3

^-*-ElTT SUBRl

JBXT IP SUBRl •

BXT IP SUBR2 •

EXT IP SRCH$$

EXT IP CLOS$A

.EXT" IP SUBR2 *•

EXT IP C0MN1

H I IP C0MN2 = 4001/0

" EXT IP SRCH$$

EXT IP CLOS$A

EXT IP SPOOLS

ENT SUBR2

EXT IP COMBU

^M IP C0MN2 = 4001/0

EXT IP CL0S$A

IP is an actual-address pointer

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

LIBRARY VAPPLB
LIBRARY SPOOL$
LIBRARY

-»-ENT PROQ

JEST IP 8TTBR1-
J g y i P SUBR3-
BXTJIP 8RCH$$
BXT IP CL08$A

•ENT 8UBR1 BNT SUBR2-

D

SSariP 8TJBR2 •
BXT IP COMN1

^ • • H IP C0MN2 = 4001/0

BXT IP C0MN1
^ H IP C0MN2 = 4001/0
BXTl IP CLOS$A-

IP SRCH$$

IP GL0S$A

IP SPOOL*

EXT|IP is a faulted pointer.
DYNT is a dynamic-link declaration.

After Using LIBRARY Subcommands in BIND
Figure 3-5

First Edition 3-14

THE EPF MECHANISM

There still remain two unresolved references to the COMN1 common area.
BIND knows the size of the common area, because this information was
provided in the object files that referenced the common area. However,
BIND has not yet resolved the two external IPs to C0MN1, because it
does not yet know whether COMNl is part of the EPF, or external to the
EPF (as defined by the SYMBOL subcommand) as is COMN2. Once the FILE
subcommand is given, BIND resolves the dilemma by placing any
unresolved common areas within the LINK portion of the EPF and
resolving IPs to the common areas to imaginary addresses.

However, if you wish to produce a MAP of an EPF before issuing the FILE
subcommand, you may want the imaginary addresses produced for such
common areas to be present in the map. To effect this, issue the
RESQDVE_DEFERRED_COMMDN subcommand of BIND before issuing the MAP
subcommand of BIND. Figure 3-6 illustrates the effect of the
PESCLVE_PEFERRED_COMMDN subcommand on IPs to COMNl and on the EPF
itself.

As shown in Figure 3-6, BIND has allocated storage in the EPF for tiie
COMNl common area, and resolved IPs to COMNl so that they point to this
area. Although not shown, COMNl is located in the LINK portion of the
EPF. The IPs to COMNl are imaginary addresses, because the final
address for COMNl is not known until after the EPF is invoked.

Although all external IPs have been resolved in some fashion, there
remains the task of defining the entrypoint or entrypoints to the EPF.
A program EPF has only one entrypoint, defined by the MAIN subcommand
of BIND, as illustrated in Figure 3-7. A library EPF has one or more
entrypoints, defined by the ENTRYNAME subcommand of BIND, as described
in Chapter 6.

Figure 3-7 illustrates the final EPF file produced by a FILE subcommand
after the entrypoint (s) of the EPF have been identified. PRIMDS uses
the MAIN or ENTRYNAME entrypoints when invoking the EPF. If no MAIN
subcommand is given while linking a program EPF, BIND uses the first
module linked via the LOAD subcommand as a default. If no ENTRYNAME
subcommand is given while linking a library EPF, the library EPF is
effectively useless because the dynamic linking mechanism will not link
to any subroutines contained in it.

Figure 3-7 also illustrates that, once the EPF is written to a file,
the boundaries between procedures are less distinct; BIND assembles
the procedure frames and link frames for the procedures into single
procedure segnents and link segments for use by PRIMDS. Generally,
PRIMDS is not aware of the boundaries between procedures within an EPF;
PRIMDS is more concerned with the boundaries between EPFs in memory.

Phase 3 - EPF Invocation

When an EPF is invoked, PRIMDS begins the process of preparing the EPF
so that it can be executed. Portions or all of this process may be
avoided, however, if they have been performed previously.

3-15 First Edition

ADVANCED PROGRAMMER'S GUIDEr VOLUME I: BIND AND EPFS

The form of invocation depends upon the type of the EPP. A program EPP
is invoked by calling the EPF$RUN subroutine or by calling the CP$
subroutine to execute an EPP. (CP$ is called to process a user command
such as RESUME; it calls the same EPF$ subroutines that EPF$RUN
calls.) A library EPF is invoked by a program that references one of
its entrypoints by name.

Once PRIMDS has determined the name of the EPP to be invoked, it checks
to see if it has already performed some or all of the preparatory steps
needed to execute the EPF. For a program EPF, PRIMDS considers whether
it must map the EPF to memory; if it has already mapped the EPF, it
skips Phase 4. A program EPF is already mapped to memory if it is
either on the EPF cache or if another invocation of the same EPF is
still active on the command stack, such as when it is suspended by the
user.

For a library EPF, PRIMOS has already mapped in the EPF at least to
check its list of entrypoints to see if the desired subroutine is an
entrypoint in the EPF. A library EPF is already mapped to memory,
therefore, by the time PRIMDS determines that the EPF is the target of
a dynamic link. PRIMDS then determines whether Phases 5 and 6 may be
skipped. See Chapter 6 for a complete description of how PRIMDS
decides whether to skip phases 5 and 6 for a library EPF.

Phase 4 - Mapping

During Phase 4, PRIMDS allocates sufficient dynamic segments to hold
all of the pure procedure (PROC) segments required by the EPF. The
EPF$MAP subroutine performs the tasks associated with this phase.
Information on space requirements for procedure and linkage segments is
found by PRIMDS in the file containing the EPF.

PRIMDS maps the PROC segments that have been allocated to the imaginary
PROC segment numbers (-K), +2, +4, and so on) used in the file
containing the EPF. In fact, PRIMDS does not read the procedure text
in from the file at this point — instead, PRIMDS uses the virtual
memory mechanism of PRIMDS to page data for these segments directly
from the file containing the EPF. Because the virtual memory mechanism
does not allow for segments mapped in this way to be modified, PRIMDS
sets the access on these segments so that they cannot be written by the
user or the program itself.

Phase 5 - Linkage Allocation

During Phase 5, PRIMDS allocates sufficient dynamic space to hold all
of the linkage (DATA) segments and impure procedure (IMPURE) segments
required by the EPF. PRIMDS sets the access on these segments so that
they can be written by the user or by the program. The EPF$ALLC
subroutine performs these tasks.

First Edition 3-16

•ffiE EPF MECHfiNISM

RESOLVE_DEFERRED_COMMON

-fr-BHTT PROG -ENT SUBR1 ENT SUBR2-

SSTIP 8TJBR1

SnST IP 8UBR2

BXT| IP SRCH$$

BXT IP CL08IA-
l l P C0MN2 = 4001/0

^M IP C0MN2 = 4001/0

| E X T | I P C L 0 S $ A -

After Using the RESCLV5_PEFERREQj00MMDN Subcommand in BIND
Figure 3-6

3-17 F i r s t Edit ion

ADVANCED PROGRAMMER'S GUIDE, VDLUftE I : BIND AND EPFS

MAIN PROG
FILE PROG.RUN

MAIN PROG

JJXT-IF SUBR1

JHETIF SUBR2

IF SRCH$$

IP CLOS$A-

EXT

EXT

-EXT IP SUBR2

E X T I P COMBTl

• iP C0MBT2 = 4001/0

IP SRCH$$

IP CLOS$A

IP SPOOLS

EXT

EXT

EXT

.EXT-IP COMtfl

• • IP C0MN2 = 4001/0

IP CLOS$A EXT

Program EPF PROG.RUN

After Using the PILE Subcommand i n BIND
Figure 3-7

F i r s t Edition 3-18

THE EPF MECHANISM

Phase 6 - Linkage Initialization

During Phase 6, HIIMDS reads the descriptor information for the linkage
areas and impure areas of the EPF and sets the DATA and IMPURE segnents
that have been allocated to contain the indicated information. Data
such as program constants are copied directly into the DATA segnents.
Linkage data consisting of imaginary addresses are first converted into
the corresponding actual addresses for this program invocation, and are
then copied into the DATA segnents. This linkage data consists mostly
of IPs and ECB linkage area pointers. Impure procedure code is copied
directly into the IMRJRE segnents. These tasks are performed by the
EPF$INIT subroutine.

Figure 3-8 illustrates a program EPF after its imaginary addresses have
been converted to actual addresses.

Although Figure 3-8 illustrates the overall effect of a RESUME command
on a program EPF just before its main entrypoint is actually invoked,
the same actions are performed on a library EPF. All of the linkage
information for both program EPFs and library EPFs is initialized,
converting imaginary addresses to actual addresses for both IPs and
ECBs. The only IPs that remain unresolved are faulted IPs. Faulted
IPs are adjusted so that they contain the actual addresses of DYNTs,
rather than the imaginary addresses produced by BIND.

Phase 7 - Entrypoint Invocation

At this point, PRIMDS either executes a PCL instruction to the ECB of
the main entrypoint for a program EPF (performed by the EPF$INVK
subroutine), or resets the fault condition and reexecutes the original
PCL instruction that now references the ECB of the desired entrypoint
for a library EPF (performed by the dynamic linking mechanism). The
EPF is now running.

3-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

RESUME PROG.RUN
MAIN PROG

EXT

EXT

EXT

EXT

EXT

| IP SUBR1 = 4376/1022

IP SUBR2= 4376/1722

IP SRCH$$

IP CLOS$A

IP SUBR2 = 4376/1722

| IP C0MN1 =4376/3406

IIP C0MW2 = 4001/0

IP SRCH$$

IP CLOS$A

IP SPOOLS

EXT

IP C0MN1 = 4376/3406

IP C0MN2 = 4001/0

IP OLOS$A

In-memory Copy of PROG.RUN

After EPF I s Mapped and I n i t i a l i z e d
Figure 3-8

F i r s t Edition 3-20

THE EPF MECHANISM

Phase 8 - Dynamic Links Snapped

During the execution of the EPF, faulted IPs are typically encountered.
These represent dynamic links that must be snapped by PRIM3S before the
instructions referencing the faulted IPs can be executed. Once
snapped, a faulted IP becomes an actual memory address, and subsequent
use of that particular IP produces no fault condition.

Because several different faulted IPs may point to the same DYHT within
an EPF, several faults may resolve to the same subroutine within an
EPF. In addition, while some entrypoints reside in PRIMDS, others
reside in library EPFs or in static-mode libraries. To show the
details of how dynamic links are snapped in an executing EPF, several
illustrations are provided that follow the PROG program EPF through its
execution until it has snapped all of its faulted IPs.

In practice, few programs ever snap all of their faulted IPs, because
some faulted IPs point to error-handling subroutines (such as ERRPR$
and SIGNL$), while other faulted IPs point to subroutines used when no
errors occur (such as TNCO, PRWF$$, and CLOS$A). Furthermore, a
library EPF rarely snaps all of its links when it consists of more than
one entrypoint, unless each entrypoint in that library EPF is invoked
by the same calling program during its execution.

3-21 First Edition

ADVANCED PROGRAMMSR'S GUIDE, VOLUKE I : BIND AND EPFS

Figure 3-9 i l l u s t r a t e s the PROG program EPF after tiie f i r s t dynamic (
l ink t o SRCH$$ in the PROG procedure i s snapped. Here, PRINDS i t s e l f v ^
i s illustrated as residing in the same memory space as the user program
and containing many entrypoints, one of which i s named SRCH$$.

In Figure 3-9, the f irst faulted IP in the EPF, which resides in the
link frame for PROG, has been snapped. It has been replaced with the
absolute address of the ECB of SRCH$$ in PRIMDS. Note that another
faulted IP to SRCH$$, in the link frame for SOBRl, has not been
resolved.

Dynamic links to entrypoints in PRlfOS i tse l f are easy for PRIMES to
resolve. PRIM)S i s always present in every user's memory address
space. In addition, a l l PRIKDS entrypoints have their link franes
initialized at system coldstart or during system build, so no
initialization i s needed.

First Edition 3-22

THE EPF MECHANISM

Dynamic Link to SRCH$$ in PROG is Snapped

MAIN PROG

|IP SUBR1 .
| IP STJBR2 .
I IP SRCH$$

PRIMOS

EXT

EXT

IP CLOS$A
IP SUBR2 ,
IP C0MN1
IP C0MN2
IP SRCH$$
IP CLOS$A
IP SPOOL$

• I I P C0MN1
| ^ H IP C0MN2
IEXTIIP CLOS$A

EXT
EXT

Execution Point

After F i r s t Dynamic Link I s Snapped
Figure 3-9

3-23 First Edition

ADVANCED IROGRAMMSR'S GUIDE, VCLWE I: BIND AND EPFS
(

Next, a faulted IP to CL06$A in the PROG procedure i s snapped. GLOS$A (smL
i s an entrypoint in the Application Library (described in the \^^
Subroutines Reference Guide), which i s contained in the library EPF
f i l e LIBRARIES*>APPLICAT]DNJ,IBRARY.RUN. Figure 3-10 illustrates the
appearance of the PROG program EPF after the dynamic link to GL0S$A i s
snapped*

As shown in Figure 3-10, the APH,ICATIDN_LIBRARy library EPF has been
loaded into memory and "connected" to the running program EPF FROG. In
fact, by the time the f irst call to CL0S$A by the EROG procedure was
completed, the library EPF named APILICATK)N_LIBRARY went through
Biases 3 through 9 as described here, when the CL06$A entrypoint
returned to i t s caller, the PROG procedure.

Again, notice that two other faulted IPs to CLOS$A, in SDBRl and in
SUBR2, have not yet been resolved.

Sometime after calling SRCH$$ and CLOSSA, the PROG procedure cal ls the
SUBKL procedure, which will encounter i t s own faulted IPs.

First Edition 3-24

THE EPF MECHMJISM

Dynamic Link to CLOS$A in PROG is Snapped; APPLICATION_LIBRARY.RUN is Mapped In
(PROG now calls SUBR1) PRIMOS

^ • I P

^ • I P

^ • I P

• • I P

^ • I P

^ • I P

EXT

EXT

EXT

IP

IP

IP

IP

IP

EXT IP

S U B R 1 .

S U B R 2 .

CL0S$A

STTBR2 .

C0MN1

C0MN2.

CLOS$A

SPOOLS

C0MN1

C0MN2

CLOS$A

MAIN PROG

APPLICATION_LIBRARY

After Second Dynamic Link I s Snapped
Figure 3-10

3-25 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

When dynamic links that identify entrypoints in libraries already (/m>
initialized are encountered, PRIMDS needs to do much less work to make /)
the connection. This is illustrated in Figure 3-11, in which the
dynamic links to SRCH$$ and CLQS$A in SUBRl are snapped.

Because SRCH$$ is an entrypoint in PRIMDS, the process of snapping the
faulted IP to it is again straightforward. PRIMDS is already present
in the user's memory area, as always, and no initialization of any
PRIMDS-resident subroutines is ever needed at runtime.

Because CLas$A is an entrypoint in a library EPP that has already been
connected to the PROG program EPP, no initialization of the library EPF
is needed. Even if a different entrypoint in the same library EPP,
such as NLEN$A, had been called, no initialization would have been
needed.

As there are no longer any faulted IPs pointing to the DYNT for SRCH$$,
the EKNT in the illustration has been shaded in to indicate that it is
no longer in use by that program invocation. T M s shading does not
represent any action by PRIMDS; the DYNT still remains in the PROC
segment as before. The shading is present only to indicate the absence
of faulted IPs to the SRCH$$ DSNT.

First Edition 3-26

THE EPF MECHMJISM

Dynamic Links to SRCH$$ and CLOS$A in SUBR1 Are Snapped

MAIN PROG
~r

S U B R l .

SUBR2.

CLOSSA

STJBR2 .

COMN1

C0MN2

SRCH^S

CLOS$A

SPOOLS

COMN1

C0MN2

CLOS$A

PRIMOS

EXT

EXT

|IP

IP

IP

IP

IP

IP

IP
IP

IP

IP

IP

IP

IP
APPLICATION—LIBRARY

After Third and Fourth E^namic Links Are Snapped
Figure 3-11

3-27 First Edition

ADVANCED PROGRATOER'S GUIDE, VOLUfE I : BIND AND EPFS

Next, the faulted IP to SPOOL$ in the S0BR1 procedure i s encountered. f _ ^
SPOOL$ i s a Prime-supplied entrypoint that comprises the program's \^%
interface to the Spooler subsystem. SPOOL$ i s , at Rev. 19.4, supplied
as a static-mode library. (Prime reserves the right to change SPOQL$
to a library EPF in the future.) Figure 3-12 illustrates the PROG
program EPF after snapping the dynamic link to SPOOL$.

All static-mode libraries are placed in shared memory at system
coldstart. In this manner, they have a similarity to PRIMDS
entrypoints. Linkage information for a static-mode library i s
initialized when a program invokes that static-mode library for the
f irst time. Here, a similarity to program-class library EPFs exists .
Because linkage information for a static-mode library i s statically
located, only one active copy may exist for each user process. This
indicates a similarity to process-class library EPFs.

In fact, once a program has invoked a static-mode library, any other
suspended programs for the same user process that have used the same
static-mode library are made unrestartable by PRIMDS. Any attempt to
continue the execution of a suspended program that has already used a
reinitialized static-^node library i s thwarted by PRIM3S, which displays
an error message. (See Chapter 4.)

As before, notice that the DYNT for SP0OL$ i s now shaded, to indicate
that the DYNT i s no longer referenced by any faulted IPs in the PROG
EPF.

The SUBR1 procedure now calls the SUBR2 procedure.

First Edition 3-28

THE EPP MECHANISM

Dynamic Link to SPOOLS in SUBR1 is Snapped
(SUBR1 now calls SUBR2)

MAIN PROG

T

PRIMOS

EXT

[IP

|IP

| IP

| IP

| IP

| IP

IIP

| IP

| IP

| IP

| IP

IIP

IP

STJBR1 .

SUBR2 .

SRCHSS

CLOS$A

SUBR2.

COMNU

COMN2

CLOS$A

SPOOLS

COMN1

COMN2

CLOS$A

APPLICATION_LIBRARY

After Fifth Dynamic Link Is Snapped
Figure 3-12

3-29 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Finally, the las t faulted IP, to the CLOS$A subroutine, i s encountered
while executing procedure SDBR2. Figure 3-13 i l lus tra tes the PROG
program EPF after snapping th i s f inal faulted IP.

As before, because the Application Library i s already mapped into
memory and in i t ia l i zed , only Phases 7 through 9 of the EPF process are
involved in snapping th i s faulted IP. Notice that the l a s t DYNT, to
CLOS$A, has been shaded in t o indicate that no more faulted IPs
pointing to the CLOS$A DYNT ex i s t .

The final picture of the PROG program EPF shows a program in which a l l
DYNTs, which are placeholders for subroutines, have been replaced by
the actual subroutines, whether they reside in PRIMDS, in library EPFs,
or in static-mode l ibraries . From this point forward, such an EPF
executes faster when i t encounters snapped IPs, because the dynamic
linking mechanism i s no longer involved.

However, PRIMDS takes care to insure that these snapped IPs do not
become a burden by preventing subsequent relocation of their targets .
An in-use library EPF, such as APPLICATJDN_JJIBRARY in the example,
cannot be removed via the REMDVE__EPF command; i f a new version i s
instal led, the user running the PROG program EPF w i l l not begin using
the new version until after PROG has completed and the next program
c a l l s the Application Library. If another program invokes
APPLICAT3DN_LIBRARY while PROG i s suspended, PRIMDS w i l l a l locate and
i n i t i a l i z e a separate linkage area for the library EPF so that a
separate connection i s made. This procedure preserves the integri ty of
the f i r s t connection made between PROG and APPLICAT:DDN__LIBRARY, because
that connection w i l l continue to use the originally allocated linkage
area for APPLICATIDN_LIBRARY.

PRIMDS has l e s s control over static-mode l ibrar ies because they are
l e s s f lex ib le . No new version of a static-mode library may be
instal led while users are running programs that use i t , or programs may
stop functioning correctly. instead, the insta l ler should shut down
and coldstart PRIMDS when ins ta l l ing a new version of a static-mode
library to ensure that programs are not adversely affected.

If, while PROG i s suspended, a static-mode library i s r e in i t i a l i z ed by
another program's invocation of one of i t s entrypoints, PRIMDS detects
t h i s and flags PROG as being unrestartable. This prevents PROG from
later cal l ing the static-mode library and inadvertently using the
linkage data in that library that was l e f t over from the other
program's use of that library.

Phase 9 - Termination

A program EPF terminates just once per invocation, either by returning
from i t s main entrypoint (preferred) or by cal l ing EXIT (an alternate
way of terminating).

First Edition 3-30

THE EPF MECHANISM

Dynamic Link to CLOS$A in SUBR2 is Snapped

| IP SUBR1 .

| IP SUBR2 .

| IP SRCH$$

| IP CLOS$A

| IP SUBR2 .

| IP COMN1

|IP C0MN2

| IP SRCH$$

| IP CLOS$A

j IP SPOOL*

| IP COMN1-

|IP COMN2

I IP CL08$A

PRIMOS

SPOOLS
Static-
mode
Library

APPLICATION_JJBRARY

After Final tynamic Link Is Snapped
Figure 3-13

3-31 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPPS
(

A library EPP terminates simply by returning from whatever entrypoint \,
invoked i t . A library EPF typically i s invoked many times during the
l i f e of a program, and i t accordingly terminates, or returns, many
times. Unlike a program EPF, there i s no point at which a library EPF
really finishes, because i t i s actually a collection of subroutines
that service a program.

Conceptually, a library EPF i s part of the program that invokes i t .
When the program terminates, the library i s also terminated by PRIMOS.
However, PRIMOS distinguishes between two types of library EPF in this
regard: program-class and process-class library EPFs. When a program
that invoked a program-class library EPF terminates, PRIMOS terminates
the library EPF by marking for reinitialization the copy of i t s linkage
area i t earlier allocated and initialized for use by the library EPF in
service of that particular program.

Similarly, when a program EPF terminates, PRIMOS marks for
reinitialization the linkage area used for that program invocation.
When a linkage area i s reinitialized, only program data and faulted IPs
are actually reinitialized, saving startup time. (Linkage areas for
program EPFs and program-class library EPFs are deallocated when the
command level they were invoked from i s released. In addition, linkage
areas for program EPFs are deallocated when they are removed from the
EPF cache.)

However, PRIMOS never reinitializes or deallocates the linkage area for
a process-class library EPF when any program terminates, because that
linkage area and the data i t contains i s usable for a l l programs
invoked by that process. Only explicit removal (via REMOVEJIPF),
logout (via LOGOUT), or command environment initialization (via INI-
TIALIZE_COMMAND_EN7IR0NMENT) causes PRIMOS to deallocate the linkage
area associated with a process-class library EPF.

For program EPFs and program-class library EPFs, keep in mind that only
one copy of the linkage area for a terminated EPF i s deallocated.
Other copies may exist i f the same program EPF i s suspended within the
same process or i f another suspended program i s also using the same
program-class library EPF. PRIMOS ensures that suspended program
invocations are not affected hy the termination of other programs.

PRIMOS also deallocates dynamically allocated memory (acquired via the
ALLOCATE statement in PLl/G, for example) when a program EPF or
program-class library EPF terminates. PRIMOS does not deallocate
memory allocated by a process-class library EPF even when the
REMOVE_EPF command i s used to remove the EPF. Only the INTTIALIZEJCOM-
MANDJENVIRONMENT and LOGOUT commands deallocate memory dynamically
allocated fcy process-class library EPFs. See Chapter 6 for more
information on storage allocation and library EPFs.

First Edition 3-32

THE EPF MECHANISM

Phase 10 - Removal

Once an EPF has completely terminated — that is, once it is no longer
in use ty any suspended or executing program — ERIMDS may unmap the
EPF from memory. The EPF$DEL subroutine performs this task. However,
PRIMDS typically keeps an EPF mapped for future use, depending upon the
type of EPF involved.

Removal of Program EPFs; PRIMDS usually places a terminated program
EPF on the EPF cache rather than simply unmapping it. While on the EPF
cache, the EPF is still mapped to memory. If the EPF is invoked again
while on the EPF cache, the mapping step (Phase 4) is avoided. In
addition, if the impure areas (such as linkage data) have not been
deallocated, the allocation step (Phase 5) is avoided, and only a
subset of the initialization step (Phase 6), reinitializing linkage
information, is required.

If, on the other hand, the EPF cache becomes unwieldy, PRIMDS
automatically unmaps the oldest EPF on the EPF cache, removing it from
the EPF cache at the same time, and deallocating its impure areas.

When you change command levels, PRIMDS removes all program EPFs from
the EPF cache, deallocating their impure areas and unmapping them from
memory. Only suspended (in-use) program EPFs and all library EPFs
remain mapped to memory. (This behavior may change at future Revisions
of PRIMDS.)

Removal of Program-class Library EPFs; When all programs that are
using a program-class library EPF have terminated, tiie library EPF is
itself considered terminated. However, PRIMDS leaves the EPF mapped to
memory and also leaves its impure areas (such as linkage data)
allocated. This allows faster scanning of tiie entrypoint table for
that library EPF in the future.

When you change command levels, PRIMDS deallocates all impure areas for
program-class library EPFs that are not in use by a suspended or
running program, but it leaves the library EPFs mapped to memory.
(This behavior may change at future Revisions of PRIMDS.)

Removal of Process-class Library EPFs; When all programs that are
using a process-class library EPF have terminated, the library EPF is
itself considered terminated. However, PRIMDS leaves the EPF mapped to
memory and also leaves its impure areas allocated because, once
allocated and initialized, a process-class library EPF is considered
initialized for tiie duration of that process (that is, until the user
logs out or the command environment is reinitialized).

When not in use, you may remove a process-class library EPF with the
REMDVE_EPF command. However, you can never remove an EPF that is in
use (executing or suspended).

3-33 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS
(

Normally, you do not need to be concerned with the EPF cache or the [/
maintaining of library EPFs performed by PRIMDS. These features are
present as an optimization feature of PRIMES. They do provide the
ability to display useful information on a recently invoked EPF via the
LISTLEPF command without having to specify the -NDTLMAPEED option.

However, the maintaining of inactive EPFs in memory also may produce
unexpected side effects. For example, while an EPF is mapped to memory
for one or more users, installation of a new version of that EPF
results in the generation of a .RPn file containing the old version,
even though no user may be running the old version or may even have the
old version suspended. The transparent nature of PRIMDS' creation of
•RPn files during COPY operations should keep this from being a
problem.

Note (

An EPF cannot be deleted if another user either is running that
EPF, has suspended that EPF, or has that EPF mapped to memory.
On the other hand, if only one user is using an EPF, and the
EPF is not running nor suspended (that is, it is a program EPF
on the EPF cache or a library EPF still mapped to memory), then
that user can delete the EPF. The DELETE command automatically
removes an inactive EPF if it is found to be in use during the
first deletion attempt; after removing the inactive EPF, it
retries the deletion.

A program that maps an EPF by calling EPFSMAP may also explicitly call
EPF$DEL to unmap that EPF. A program that calls EPF$RUN may make use
of a special key that indicates that EPF$RUN should call EPF$DEL after
invoking the program EPF to unmap it rather than place it on the EPF
cache. See Volume III of this series for more information on EPF$MAP,
EPF$DEL, and EPF$RUN.

HOW MOLTIPLE IWCCAT3DNS OF AN EPF ARE HANDLED

Sometimes a user might invoke an EPF, either explicitly by running a
program EPF or implicitly by running a program that calls a library
EPF, then suspend the EPF via Control-P, and issue a command that
causes the same EPF to be reinvoked. Here, PRIMDS must allow the
second invocation of the EPF to execute without disturbing the state of
the first EPF, so that the user has the option of later continuing the
first invocation.

When PRIMDS detects that an EPF that is already mapped into memory is
being invoked, PRIMDS checks the type of the EPF. If the EPF is a
process-class library EPF, PRIMDS reuses the already-initialized
linkage area for that EPF. For other types of EPFs, program EPFs and (
program-class library EPFs, PRIMDS allocates new memory for the linkage
areas of the EPF, rather than reusing any existing linkage areas for

(

First Edition 3-34

THE EPF MECHANISM

the EPF. In t h i s case, PRIMDS must i n i t i a l i z e th i s newly allocated
linkage information. Because the stack i s preserved when a program i s
suspended, and because PRIMDS does not destroy the linkage of the
suspended EPF, reinvoking the same EPF does not necessarily overwrite
the data used by the suspended invocation. (See the res tr ic t ion on
using static-mode l ibrar ies , in Chapter 4, for an exception to t h i s
rule.)

However, to save time and memory, PRIMDS does reuse the same pure
procedure (PROC) segments used by the first invocation of the EPF.
PRIMDS can do this because segments mapped in this manner cannot be
modified, and because no data in PROC segnents needs to be adjusted to
reflect imaginary-to-actual memory addresses.

HOW SIMULTANEOUS USE OF AN EPF IS HANDLED

When two or more users are running the same EPF, PRIMDS detects t h i s
and shares pure procedure (PROC) segnents between the users. I t can do
t h i s even when one user's actual segment numbers for the EPF are
different from another user's actual segnent numbers, because no
segnent numbers are stored in PROC segnents.

For example, i f two users are running the same EPF at the same time,
one user might have imaginary PROC segnent number +0 mapped into actual
segnent number 4365, while the other user might have imaginary segnent
+0 of the same program EPF mapped into segnent number 4372. Segnent
4365 for the f i r s t user and segnent 4372 for the second both map to the
same imaginary PROC segnent in the f i l e containing the EPF, reducing
actual memory usage and paging overhead.

To prevent one user from being able to adversely affect the smooth
operation of another user's program, PRIMDS protects PROC segnents so
that they cannot be written into when they are shared in t h i s fashion.

HOW DEBUGGING OF AN EPF IS HANDLED

You can use DBG on a program EPF by issuing the DBG program command
rather than the RESUME program command. You cannot, however, use DBG
to debug a library EPF directly. To debug a library EPF, link the
object f i l e s that comprise i t into a program EPF image with a main
entrypoint consisting of a small module that invokes or otherwise
declares the existence of a l l of the desired entypoints in the library
EPF. Then, use the DBG program command t o debug the resulting program
EPF.

DBG allows you to se t breakpoints in the program EPF you are debugging,
so DBG must be able to modify the pure procedure (PROC) segnents of the
program. Yet PRIMDS normally maps the PROC segnents t o their imaginary
counterparts in the f i l e containing the program EPF, sett ing the access
to the PROC segnents so that they cannot be written into . How can DBG

3-35 First Edition

ADVANCED PROGRAMMER1 S GUIDE, VOLUME I: BIND AND EPFS

set breakpoints in the code when it cannot write over any procedure
instructions?

Tb handle this, EBG specifically requests PRIMDS to not map IROC
segments into memory. Instead, IRIMDS copies data from the imaginary
IROC segments in the program EPF file into the actual IROC segments in
memory. IRIMDS sets the access on these copied IROC segnents so that
they can be written into. In addition, IRIMDS does not share these
IROC segnents with any other users.

Finally, if the user suspends DBG and invokes the program EPF he or she
is debugging using the RESUME! command, IRIMDS allocates new IROC
segments for this second invocation of the program EPF, preventing
breakpoints set in DBG from affecting the RESUME invocation of the
program EPF. When the RESUME invocation has finished, the user may
type START and continue debugging the DBG invocation of the program
EPF.

One of the effects of using DBG, therefore, is that attempts ty the
program EPF being debugged to modify itself generally go undetected.
Such attempts cause acoess violation errors only when the program EPF
is invoked using the RESUMES command.

HOW HJNNDg A REMDTE EPF IS HANDLED

If a remote EPF is invoked, either by a user typing RESUME program
where program.RUN resides on a remote system disk, or by an entrypomt
search rule referencing a remote library EPF, IRIMDS does not map the
PROC segnents to the remote file. Instead, the PROC segnents are
copied from the file into memory before execution begins, in a fashion
similar to the way IMPURE segnents are handled.

This is done so that a running remote EPF will not be affected should
the remote system or network be shut down. If the PROC segnents were
mapped, then the effect on the running program of the remote system
becoming unavailable would be unpredictable. In any case, the
condition could probably not be trapped by the running program, because
the code to handle such a condition would probably not be in physical
memory. (The chances of error recovery code being frequently
referenced tend to be small). If the recovery code is not in physical
memory, then it would have to be paged in from the remote system, with
which contact had been lost.

Therefore, cue to the amount of time required to copy a large remote
program EPF into memory, it is recommended that you provide local
copies of EPFs on all systems in your network. By doing this, you take
advantage of the faster memory mapping mechanism that is used for local
EPFs.

First Edition 3-36

4
EPFs and Static-mode

Applications

Because of the dynamic nature of EPFs, their interaction with existing
static-mode applications is fraught with considerations and
restrictions. In general, if you have a large body of software that is
already built with SBG, it is best to designate one or two applications
as pilot cases for conversion before committing to a wholesale
conversion. Once you have succeeded at converting the chosen pilot
applications, and have developed corresponding expertise on conversion
difficulties peculiar to your installation, you should then perform a
wholesale conversion rather than a piecemeal conversion, in order to
avoid excessive concern over the considerations and restrictions
described in this chapter.

However, piecemeal conversion is sometimes the only feasible approach,
and, in such cases, you should thoroughly understand the information
presented in this chapter before you begin, so that you know what
pitfalls may await you.

In many cases, conversion involves simply relinking an application
using BIND. However, certain uses of static system-defined data in
static-mode programs may no longer function or may not be appropriate
when these programs are converted to EPPs.

Even if you do not intend to convert any applications to EPFs in the
near future, you may have an existing application that requires
modification to run on a Rev. 19.4 (or beyond) system because of the
existence of library EPFs that contain system library subroutines.
Such an application is one that resides in shared memory and that
shares faulted IPs (Indirect Pointers).

4-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS /

This chapter presents, in d e t a i l , the considerations and r e s t r i c t i o n s (^j
involved in the interface between the dynamic environment provided ty /^j
EFFs and the older, static environment s t i l l present in PRIMDS and in
existing user-written applications:

• A restriction on the use of static-mode programs by EPFs

• A restriction on the use of static-mode libraries by EPFs

• Static information to avoid in EPFs

• The ef fect of EPFs on ex i s t ing shared static-roxfe appl icat ions

RESTRICTION ON THE USE OF STATIC-MODE PROGRAMS BY EPFS

Because the memory used fcy static-mode programs i s a l l s t a t i c a l l y
a l located, res tr ic t ions are placed on the ir use .

When This Restrict ion I s Apparent

The e f fec t of t h i s r e s t r i c t i on i s seen when one static-mode program i s
suspended, another static-mode program i s invoked, and then an attempt /
i s made to continue execution of the f i r s t static-mode program. \^\
Because both static-mode programs use the same areas of memory, PRIMDS '
prevents the attempt to continue execution of the f irst static-mode
program after the second static-mode program has executed.

A Sample of This Restriction

For example, ED and SLIST are both static-mode programs. (They may be
converted to EPFs in the future, at which point you must substitute two
other static-mode programs for the example below.) If a user invokes
ED, suspends the program via Control-P, and then invokes SLIST, the act
of loading SLIST into memory causes the suspended memory image of ED to
be at least partially destroyed.

Because users typically use Control-P to abort a running program rather
than to suspend i t with the intention of continuing the suspended
program later, PRIMDS allows the subsequent invocation of SLIST.

First Edition 4-2

EPFS AND STATIC-MDDE APPLICATIONS

r lf f after completing the SLIST session, the user attempts t o use the
START command t o continue the suspended ED session, ERBOS rejects the
attempt, as seen here:

ED
INHJT
J i l l - I am worried that Tom's Tasty Tinsel might not be
able to handle our shipment of 200 s ta in less s tee l pizzas.
I've eaten there, and I have noticed their receiving dock
i s not real ly se t up for such large items. Seeing as you' re
in charge of a l l t h i s , I suggest you c a l l them up and
make sure they know what they're getting! — Fred

P.S. The order number i s (user types Control-P)
QUIT.
OK 14:19:48 0.218 0.033 level 2
SLIST FREDDYXD0MS_ORDER#
Fred: the order number for Tom's Tasty Tinsel order of
200 s ta in less s tee l pizzas i s 0214453. — Sue
OK 14:19:53 0.172 0.054 level 2+
RELEASELLEVEL
Stat ic mode program released, (rls)
OK 14:20:01 0.054 0.000 level 2
START
Attempt to proceed to overwritten program image, (l isteru)
ER 14:20:02 0.045 0.000 level 2

How to Recover From Encountering the Restriction

If you encounter t h i s restr ict ion, you should release the command stack
using the RELEASELLEVEL -ALL command. In addition, you should use the
CLOSE -ALL command t o close any f i l e units opened by the restricted
invocation.

An alternative method of recovery i s to issue the INniALIZELPOM-
MRND__EN7IR0NMENT command (abbreviated ICE).

A more general solution t o t h i s problem i s t o convert your exis t ing
static-mode programs t o program EPFs.

Note

These recovery methods recover the user's ability to execute
commands up to the full limit of the user's environment. They
do not recover the data in the overwritten program. In the
example given above, for instance, the edit session is lost.

4-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

A General Statement of the Restriction

A generalization of th i s restr ict ion i s that only one static-mode
program may be active, whether suspended or running, at any given time
for a given process.

Therefore, i f the user invokes program A, then quits and invokes
program B, then quits and invokes program C, and so on, PRIMDS w i l l
automatically terminate active static-mode programs in the sequence (A,
B, C, and so on) each time a new static-mode program i s invoked. Any
subsequent attempt t o continue an inactive static-mode program that had
been suspended causes ERIMDS to issue an error message.

The Reason Behind the Restriction

As implied by the error message displayed when the res tr ic t ion i s
encountered, ERIMDS prevents an attempt to continue a suspended program
invocation i f i t detects that parts of the suspended program image may
have been overwritten.

Unlike program EPFs, the placement of procedure and linkage areas for
static-mode programs i s determined during program load sess ions by
either the SEG/L9AD u t i l i t i e s or by the programmer during the SEG/LQAD
session. Static-mode programs therefore cannot be dynamically placed .
in memory when they are invoked. (/ ^

Additionally, most static-mode programs create their own stack bases
rather than using the command stack (used by program EPFs). The
placement of th i s stack base i s a lso determined when the program i s
loaded.

Due to these characteristics, static-mode programs cannot coexist in
memory for a particular user process.

RESTRICTION ON THE USE OF STATIC-M3DE LIBRARIES BY EPFS

Because the linkage areas for static-mode l ibrar ies are a l l s t a t i c a l l y
allocated, a restr ict ion i s placed on their use by program EPFs.

When This Restriction Is Apparent

The effect of th i s restr ict ion i s seen when one program EPF i s
suspended, another program EPF i s invoked, and then an attempt i s made
to continue execution of the f i r s t program EPF. If both the f i r s t and
second program EPF use the same static-mode library, then PRIM3S
prevents the attempt t o continue execution of the f i r s t program EPF (
after the second program EPF has executed.

(

First Edition 4-4

EPFS AND STATIC-MODE APPLICATIONS

A Sample of This Restriction

In t h i s example, a program EPF named SPOGL_MY_REEORTS, which makes use
of the static-mode library SP3GL$, i s invoked, suspended via Control-P,
and then reinvoked. When the second invocation completes, the user
attempts t o proceed with the f i r s t invocation, and encounters the
static-mode library restr ict ion. (The Prime-supplied SPOOL$ library
may be converted t o a library EPF in the future. At that point, i f
other static-mode l ibraries s t i l l ex i s t , you must substitute the use of
one of them and a program that uses i t in the example below t o
reproduce i t . However, i t i s possible that a l l static-mode l ibrar ies
supplied by Prime may be converted t o library EPFs in the future, at
which point the restr ic t ion under discussion i s no longer pertinent.)

OK, RDY -ICN5
OK 10:13:30 0.060 0.000
RESUME SPOaL,_JEl_REPOKIS
GO
Enter start date for report spooling, or <CR> to leave:
— > 08/10/84
Enter end date for report spooling, or <CR> to leave:
— > 08/14/84

Spooling reports for period starting on 08/10/84 and ending on
08 /14 /84 . . .

08/10/84 i s PRT005
08/10/84 i s PRT006
08/12/84
08/13/84
08/14/84

i s PRT007
i s PRT008
i s PRT010

(12 records)
(13 records)
(10 records)
(5 records)
(47 records)

Enter s tart date for report spooling, or <CR> to leave:
—> (user types Control-P)
©JIT,
OK 10:20:46 12.254 9.301 level 2
RESUME SPOQl4_MY_J^EPORIS
GO
Enter start date for report spooling, or <CR> to leave:
— > 08/17/84
Enter end date for report spooling, or <CR> to leave:
— > 08/21/84

Spooling reports for period starting on 08/17/84 and ending on
08/21/84...

08A7/84 is PRT012 (8 records)
08/18/84 is PRT013 (10 records)
08/19/84 is PRT015 (25 records)
08/20/84 is PRT016 (18 records)
08/21/84 is PRT017 (30 records)

4-5 First Edition

ADVANCED PROGRAMMER1 S GUIDE, VCLUMS I: BIND AND EPPS
(

Enter start date for report spooling, or <CR> to leave: (
—> (CR)
OK 10:27:31 10.205 7.722 level 2
START /* User now attempts to continue f irst invocation.
Attempt to proceed to overwritten program image. (listen_)
ER 10:27:52 0.060 0.000 level 2

How to Recover From Encountering the Restriction

If you encounter this restriction, you should release the command stack
using the RELEASE_JJEVEL -ALL command. In addition, you should use the
CLOSE -ALL command to close any f i le units opened by the restricted
invocation.

An alternative method of recovery i s to issue the INITIALIZE_CQM-
MANELENVIRONMENT command (abbreviated ICE).

The Reason Behind the Restriction

As implied by the error message displayed when the restriction i s
encountered, PRIMDS prevents an attempt to continue a suspended program
invocation i f i t detects that parts of the suspended program image may
have been overwritten.

Although the program in the example i s a suspended program EPF, and
therefore has not had any of i t s program image overwritten, the
static-mode library SPOQL$, used by the EPF, has had i t s linkage area
overwritten.

When a static-mode library i s f irst invoked by a program EPF, PRIMDS
init ial izes the linkage area for the library. During execution of the
static-mode library subroutines, the linkage area for the static-mode (
library i s used and modified by the static-mode subroutines.

If execution of the program EPF i s suspended, for example, via
Control-P, a subsequent command that runs a program EPF or a
static-mode program that also uses the same static-mode library may
occur. If this happens, PRIMDS must reinitialize the linkage area for
the static-node library when the library i s called, so that the new
program wi l l not use subroutines that are operating on undefined data
values in the linkage area.

Because the linkage area for a static-rode library i s statically
located, i t cannot be relocated by PRIMDS for the new program that i s
calling the library.

Therefore, reinitializing the linkage area for that library destroys
the previous contents of the linkage area. The previous contents of (
the linkage area were set during the first invocation of the library by
the original program EPF.

\s^\

First Edition 4-6

EPFS AND STATIC-MDDE APPLICATIONS

PRIMDS detects t h i s condition and prevents the user from continuing
under such circumstances so that the original program EPP w i l l not
behave in an undefined fashion when i t makes subsequent c a l l s t o the
static-mode l ibrary.

STATIC INFORMATION TO AVOID IN EPFS

Whether building a new application as an EPF or converting an exis t ing
application t o an EPF, you should avoid the use of certain s t a t i c
information by the program. Such s ta t i c information includes:

• Command line information

• Error information

Static command line information is accessed and manipulated using the
subroutines GOMANL and RDTK$$; static error information is accessed
and manipulated using the subroutines GETERR, PRERR, and ERRSET. An
EPF that uses these subroutines may sometimes operate correctly and, at
other times, produce invalid results.

Static Command Line Information

The GOMANL and RDTK$$ subroutines have been modified at Rev. 19.4 so
that static command line information, which prior to Rev. 19.4 was
per-process information, is now maintained for each command level.
This allows separate programs that use these subroutines to coexist in
the same process without disturbing each other. However, if one
program that uses GOMANL and RDTK$$ directly invokes another program
that also uses these subroutines, the second program1 s use of these
subroutines will disrupt the command line information for the first
program, and invalid results may be produced. (One program directly
invoking another does not produce a change in the user's command level;
static command line information is maintained for each command level,
but not for each individual program.)

The alternative to using GOMANL and RDTK$$ is to design programs so
that they accept the command line from the PRIMDS command processor as
an argument to the main entrypoint of the program, and so that they
parse the command line using a parsing subroutine such as CL$PIX or
CMDL$A.

4-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPPS

Static Error Information

The GETERR, FRERR, and ERRSET subroutines have not been modified a t
Rev. 19.4. The s t a t i c error vector remains a per-process ent i ty .
Therefore, two programs that use ERRSET along with GETERR and PRERR to
set and retrieve s ta t i c error information are l ike ly to have adverse
effects on each other i f they coexist in the same process as EPFs.

The alternative to using these subroutines i s t o use PRIM3S subroutines
that return error codes rather than older versions that se t the s t a t i c
error vector; t o use the ERRFR$ subroutine t o display error messages;
and to pass the returned error codes back t o the ca l l ing subroutines or
the FRIMDS command processor via the second argument of the main
entrypoint cal l ing sequence.

EFFECT OF EPFS ON EXISTING SHARED APPLICATIONS

In rare cases, exist ing applications that use shared segments for
storage of program code (as opposed t o shared data) may be adversely
affected ty the introduction of library EPFs at Rev. 19 .4 . In
particular, shared static-mode programs and l ibrar ies that place
faulted IPs (Indirect Pointers) in shared segments w i l l probably
exhibit erratic behavior when run on a Rev. 19.4 system. (Faulted IPs
are IPs to external subroutines that are sat i s f ied with dynamic l inks ,
or DYNTs, during the loading of the application.)

Applications that remain static-mode at Rev. 19.4 should not encounter
problems when run under Rev. 19.4 PRIMDS i f they do not share faulted
IPs. Applications that do share faulted IPs, either exp l i c i t ly or
implicitly (by sharing linkage frames) may be affected at Rev. 19.4
because l ibrar ies , which before Rev. 19.4 were s ta t i ca l l y assigned
segnents during system coldstart, may at Rev. 19.4 be library EPFs.
Therefore, a particular entrypoint in a library EPF may have one
address for user A and another address for user 6, even though the
library EPF i s shared fcy the EPF mechanism. Prior to Rev. 19 .4 , that
entrypoint would always have the same address for a l l users following a
system coldstart.

Shared applications that place seme or a l l of their linkage information
in shared memory (segments '2000 through '3777) are l i k e l y t o encounter
this situation, because linkage information typical ly contains faulted
IPs for most subroutines. Applications that exp l i c i t l y place any
faulted IPs in procedure text that i s then shared w i l l a lso encounter
this situation.

Normally, a l l IPs and ECBs are placed in the linkage frame for a
procedure; linkage areas for a program are normally placed in par-user
(nonshared) memory. Some applications place ECBs in the procedure
frame by using the -PBECB option of the compiler or by specifying the
ECB pseudo-op of PMA within a PROC block, rather than within a LINK
block, in a PMA program. Such applications wi l l encounter no
difficulties unless they are converted to EPFs.

First Edition 4-8

EPFS AND STAT1C-MDEE APPLJOVTIDNS

Other applications place the linkage frame of one or more procedures in
the shared (procedure) segnents. Faulted IPs may be present in the
linkage frames of such applications. If this is the case, the shared
segments are not protected against modification, allowing these faulted
IPs to be snapped as the application is used. (A segnent-protection
value of 700 octal causes the SHMIE command to allow all users to
modify the segment.) Such applications will likely behave erratically
until they are modified so that they do not share linkage frames.

Rarely, applications explicitly place faulted IPs in shared segnents.
These IPs are explicitly resolved during system coldstart by a program
that snaps all of the links for that program before protecting the
shared segments against further modification. (Applications that share
faulted IPs and explicitly snap them during coldstart are unusual and
are not built according to Prime-documented guidelines.) Such
applications will probably behave erratically until they are modified
so that they do not share faulted IPs.

All of the practices described in the preceding paragraphs are used to
reduce the working set of an application. By sharing BCBs, IPs,
linkage frames, or all three, less total memory is used when several
users run the application.

Effect of Sharing Faulted IPs

An IP that points to the ECB (Entry Control Block) of a procedure
starts out as a faulted IP if it points to a dynamically linked object
(an entrypoint that is accessed via the dynamic linking mechanism).
When an indirect reference occurs through a faulted IP, typically via a
PCL IP,* instruction, PRIMDS determines the name of the entrypoint
being targeted by the IP. PRIMDS then searches its list of entrypoint
names, starting with internal entrypoints, then moving on to items in
the user's entrypoint search rule (ENTRY$.SR).

When PRIMDS finds the desired entrypoint, PRIMDS determines the address
of the ECB of the target procedure and then replaces the original IP
with that address.

As part of finding the desired entrypoint, PRIMDS may map in a new
library EPF, assigning it areas of memory in which it is to reside.
Therefore, a reference by user A to subroutine PLOTST through a faulted
IP might be resolved by PRIMDS to an ECB at location 4362/1764, whereas
the same reference by user B to the same subroutine micjht be resolved
to another copy of the ECB, for the same subroutine, at location
4357 /1764.

For IPs placed in per-user (nonshared) memory segnents, this poses no
problem, because each user has a separate copy of the IP to match the
separate copy of the ECB.

4-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPPS

However, a program sharing faulted IPs resolves them at system (̂
coldstart so that they point to the ECBs of desired entrypoints.
Library EPFs containing desired entrypoints are mapped in for the user
who first shares the program (typically user 1, which runs the system
startup file). Addresses of the desired entrypoints within the library
EPFs replace the original faulted IPs as the effective addresses of the
ECBs.

Then, when another user invokes the same application later, the same
resolved IPs are used (because they reside in shared segments).
However, libraries are mapped into memory only as a result of
encountering faulted IPs; therefore, the library EPFs referenced by
these resolved IPs will probably not be mapped into memory for this
second user.

Even if the needed library EPFs are mapped into memory for tiie user,
they may not necessarily reside in the corresponding areas of memory as
they did for user 1 when the faulted IPs were snapped.

As a result, the application typically encounters an illegal segment
error, an access violation error, or a pointer fault error.

Modifying an Application to Not Share Faulted IPs

To modify an application so that it does not share faulted IPs, you
must either change its load sequence so that shared segments are used
to contain only procedure code and other constant data, or you must
load all of tiie subroutines it needs into the same application,
including those in Prime-supplied libraries.

Modifying the Load Sequence: Modifying the load sequence of an
application so that it does not share IPs is the safest approach. It
involves changing the load sequence so that only pure code (procedure
code) is placed in shared segments and disabling special-purpose
programs that snap faulted IPs at coldstart for the application. For
example, a CPL program that builds such an application (via SEG) might
contain the following line:

S/LOAD MDDULE1 0 2035 2035

The underlined segment number, the second 2035 in the command line,
specifies that linkage information (including IPs and the ECB) is to be
placed in segment '2035, a shared segment. Modify this line, and lines
like it, to place the linkage information in nonshared segments, such
as segment *4000. For example:

S/LOAD MODULE! 0 2035 4000

First Edition 4-10

(•

EPFS AND STAT3C-MDBE APPLICATIONS

Then, modify the load sequence for your application so that it performs
no processing of the .SEE file, program map, or object files for the
purposes of gathering information on the locations of faulted IPs.
(Because Prime provides no program for doing this, an example of this
cannot be documented here; it is expected that each development group
that has built an application that shares IPs has also built its own
tools to find faulted IPs.) An application may have no such program,
if it leaves shared segments unprotected against user modification.

Finally, find the portion of the system startup file, PRIMDS.GOMI (or
C_PRMD), that shares the application and modify it so that it no longer
runs a program to snap faulted IPs in the shared segment images of the
program. If your application has no such program, modify the system
startup file to set the protection for shared segments to '600 (read
and execute) rather than '700 (read, write, and execute).

Loading In All Subroutines; An alternate solution is to load in all
subroutines used by your application that do not reside in PRIMDS
itself or in static-mode (Prime-supplied) libraries; that is, load all
subroutines used by your application that reside in library EPFs
directly into your application in place of the dynamic links it
currently loads.

This solution has the disadvantage of increasing the size of your
application while duplicating the extra subroutines loaded; other
applications will be unable to access the copies of those subroutines
loaded into your application, and will instead use the copies in the
library EPFs. However, as the size of your application generally
affects only the coldstart initialization time of your application,
performance should not be reduced; in fact, because the remaining
faulted IPs can still be snapped at coldstart, the performance gains
realized by constructing your application in this unusual way can be
maintained. (Internal PRIMDS subroutines and subroutines in
static-mode libraries remain in the same areas of memory for all users
after system coldstart.)

However, you must load in the unshared versions of all libraries that
your application references. For example, in a particular application
that uses the Pascal library, the load sequence might contain:

D/LIBRARY PASLIB
D/LIBRARY

4-11 First Edition

ADVANCED FROGRAMER'S GUIDE, VOiUfE I : BIND AND EPFS

Replace these statements t o load in the unshared vers ions of the \/*ml
l i b r a r i e s . The default l ibrar i e s loaded i n v ia a LIBRARY command with)
no filename are SFLLIB, FFTNLB, and IFTNLB; the unshared vers ions are
NSFLLIB and NEFTNLB. (IFTNLB has no unshared counterpart; i t i s
included i n NPFTNLB.) The corresponding statements for the above
sample sect ion of a load sequence would therefore read:

D/L3BRARY NPASLIB
D/LIBRARY NSPLLIB
DAIBRARY NPPTNLB
D/LIBRARY

Note that the D/LIBRARY command, with no filename, i s s t i l l given a t
the end; i t resu l t s in the loading of DYNTs t o s t a t i c entrypoints /
(entrypoints in to FRIMDS and entrypoints residing in static-mode \
l ibraries).

\S**%.

First Edition 4-12

5
Program EPFs

This chapter describes how to design and implement programs as program
EPPs.

WHAT IS A PROGRAM EPF?

A program EPF is an executable file system object. A program EPP is
generated by you, the programmer, using BIND. It may be used by you,
ty another user, or by another program.

To a programmer, a program EPP is a file containing a program. To a
user, a program EPP is a command. To a program, a program EPF is a
subroutine with a predefined calling sequence accessible via one of
three PRIKDS subroutines: CP$, EPF$RDN, or EPP$INVK.

The Programmer's View of a Program EPF

Typically, a program EPP contains a completed and working program. A
programmer builds a program EPF by following three steps:

1. Entering the program into the system using an editor such as
EMACS

2. Compiling the program using a compiler such as F77 or PIJ./G, or
assembling the program using PMA

5-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS
(

3. Binding the program using BIND '(

Step 1, entering the program into the system, produces source f i l e s for
the compiler or assembler. Step 2, compiling or assembling the
program, uses the source f i les to produce object f i l e s . Step 3,
binding the program, uses the object f i l e s to produce a program EPF.

The f i l e containing a program EPF has the name program. HJN. The .HJN
suffix specifies that the f i l e contains a program EPF. (An alternate
suffix for an EPF f i l e , .RPn, i s described in Chapter 1.)

This chapter describes how to take full advantage of program EPFs
during each of the above steps.

The User's View of a Program EPF I

A user runs a program EPF in one of two ways:

• By typing the name of the program EPF as a PRIMDS command

• By using the PRIMDS RESUME command to run the program EPF

General information on entering commands and running programs i s
provided for users in the Prime User's Guide. (

Typically, if you write a program, you provide additional documentation
describing the nature and purpose of the program, where i t resides, how
to run i t , and whom to contact i f problems arise.

Invoking a Program EPF as a PRIMDS Command; If a program EPF resides
in the directory CMDNCO on the command disk of the system, users invoke
the program EPF by simply typing i t s name as i f i t were a normal PRIMDS
command. The command disk i s usually logical disk 0 on a system. For (
more information, see your System Administrator or the System
Administrator's Guide.

Invoking a Program EPF Using the RESUME Command; A user invokes any
program EPF by using the PRIMDS RESUME command and specifying the
pathname of the program EPF. The user must have Read access to the
program EPF.

The Program's View of a Program EPF

A program invokes a program EPF by calling one of several system
subroutines, depending on the needs of the invoking program. When one /
program invokes another program in this manner, the f irst program i s \ *̂%
suspended while the second program runs. When the second program '
finishes, the first program continues running.

First Edition 5-2

UROGRAM EPFS

f^ The first program may supply input data to the second program when it
invokes the second program. It can also accept returned information
from the second program when the second program finishes. For example,
the first program can receive information from the second program as to
whether or not the second program ran successfully.

The ability for one program to call another is not limited to one
occurrence; the second program can call a third, and the third can
call a fourth. The only limits placed on the invocation of programs
from within programs are:

• Resource limits, such as amount of memory and internal table
space

• Restrictions placed on the use of static-mode programs (those
programs linked using SBG or LOAD rather than BIND)

• Limits set by the System Administrator on the command level
breadth

The resource limits are exceeded when PRIMDS is unable to allocate
resources to execute another program EPF. A discussion of static-mode
program restrictions is found in Chapter 4.

/|pN
The command level breadth is the number of programs that are active at
a given command level. PRIMDS maintains this number; this number is 0
when the user is at PRIMDS command level. When the user runs a program
EPF, PRIMDS sets this number to 1. If the program EPF invokes another
program EPF, PRIMDS then sets this number to 2. If the second program
EPF invokes a third, PRIMDS sets this number to 3, because three
programs are active at that command level.

As program EPFs finish and return to their callers, PRIMDS decrements
this number. When the original program EPF is reached, PRIMDS sets
this number to 1. The original program EPF may then choose to invoke
further program EPFs, which causes PRIMDS to again increase the command
level breadth. However, when the original program EPF finally
finishes, PRIMDS returns this number to 0, and places the user at
PRIMDS command level.

The System Administrator has the ability to limit the command level
breadth for all users of the system on a par-user basis. Therefore, an
attempt by a program EPF to invoke another program EPF may be thwarted
by PRIMDS because the maximum limit on the user's command level breadth
would be exceeded.

For more information on invoking programs from within programs, see
Volume III of this series.

5-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS /

WRITING THE MAIN PRCGRAM OF A PROGRAM EPF (

In every program EPF, one procedure is defined as the main entrypoint.
The main procedure is the procedure that is called by PRIMOS when the
program EPF is run. It is identified during the BIND session via the
MAIN subcommand. If the MAIN subcommand is not issued, BIND assumes
the first procedure linked is the main procedure.

The main procedure of a program EPF should accept no arguments unless
command line processing is to occur. See Volume III of this series for
information on writing program EPFs that perform command line
processing.

Therefore, the main procedure of an F77 program should begin as
follows:

(

PROGRAM program-name

The main procedure of an FTN program should begin with:

SUBROUTINE program-name

The main procedure of a PU/G program should begin with: '^^

program-name: PROCEDURE;
The main procedure of a PMA program should be structured as described
in Chapter 7. However, i t s ECB should specify that i t accepts no
arguments, as follows:

program-ecb ECB program-name-start

In addition, the END pseudo instruction at the end of the module should
specify the ECB that i s to serve as the main entrypoint for the module,
as follows:

END program-ecb

If you specify no label following the END pseudo instruction, you must
use the MAIN subcommand of BIND when you link the PMA module as the
f irst module of a program EPF, or the program wil l fail to run.

First Edition 5-4

PROGRAM EPFS

The MAIN Subcommand of BIND

Use the MAIN subcommand of BIND to specify the main entrypoint of the
program EPF. PRIMOS invokes this entrypoint when the EPF is invoked.
If the MAIN subcommand is not specified during the linking of a program
EPF, BIND defaults to choosing the first ECB linked during the BIND
session as the main entrypoint.

The main entrypoint of a program EPP has a predefined calling sequence
if it accepts arguments. This calling sequence is described in detail
in Volume III of this series.

The DENT Subcommand of BIND

The DYNT subcommand of BIND controls the production of dynamic links,
typically for references to external entrypoints defined in your own
personal library. (PRIMDS does not support dynamic linking to common
areas.)

You may use the DYNT subcommand to declare specific entrypoint names as
dynamic links, using the form:

DYNT name-1 [name-2 ...]

The DYNT subcommand is useful when no library object (.BIN) file exists
to define dynamic links for entrypoints in a library EPF, such as a
library EPF you have created for your own personal use.

You should use the DYNT subcommand only for entrypoints in a library
EPF that is for your own personal use. Any library supplied to you, or
that you supply to other users, should be accompanied by an object file
that contains the appropriate DYNTs. This library should be built
according to the guidelines shown in Chapter 6 and should be kept in a
single, system-wide location. Users of this library should always use
the LIBRARY or LOAD subcommand to link the library object file at BIND
time; they should not use the DYNT subcommand to produce links to
individual entrypoints within the library.

5-5 First Edition

/j^\

6
Library EPFs

Library EPFs provide a simple and direct way to build and maintain a

r library of commonly used subroutines for one or more products. Use of
library EPPs can be simple, yet flexible enough to meet the demands of
different applications. Sophisticated use of library EPFs is possible,
but it requires sophisticated knowledge of how your product is
organized.

To make the use of library EPFs as simple as possible, HtlMDS provides
some intriguing mechanisms that help make the existence of library EPFs
transparent to most users. These mechanisms include:

• Library search l i s t s

• Automatic dynamic linking

• On-demand library EPF mapping

As the programmer of a library EPF, you must be aware of how these
mechanisms are seen by users, and how to use them during the
development process for your product library.

To fully acquaint you with all aspects of library EPFs, this chapter:

• Describes what a library EPF is

• Describes the steps needed to create a library EPF

• Examines the choice of the appropriate type of library EPF in
detail

6-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VCLUTG I : BIND AND EPFS

• Explains how to use EBG on a library EPF

• Describes library entrypoint search l i s t s and how to manipulate
them

• Describes specific aspects of the EPF mechanism that pertain to
library EPFs

WHAT IS A LIBRARY EPF?

A library EPF i s an executable f i l e system object. A library EPF i s
generated by you, the programmer, using BIND. It i s used by other
programs that invoke i t by calling entrypoints in i t .

To a programmer, a library EPF i s a f i l e containing a program. To a
program, a library EPF i s a collection of subroutines.

The Programmer's View of a Library EPF

Typically, a library EPF contains a collection of compieted and working
subroutines program. There are two kinds of library EPF:

• Program-class

• Process-class

The choice as to whether a library EPF should be program-class or
process-class i s up to the programmer who i s building the library EPF.
Typically, a library EPF i s built as a program-class library EPF;
PRIM3S treats a program-class library EPF as part of any program that
uses that library EPF. Occasionally, a library EPF i s best built as a
process-class library EPF; PRIMDS keeps process-class library EPFs
separate from program invocations.

A programmer builds a library EPF by following these steps:

1. Enter the subroutines into the system using an editor such as
EMACS or ED.

2. Compile the subroutines entered in Step 1 using a compiler
such as F77 or PLl/G, or assemble the subroutines using PMA.

3. Determine how the library i s to be organized.

4. Determine which subroutines in the library are to be
considered entrypoints into the library, and ensure that there
are no naming conflicts between your entrypoints and
entrypoints in other libraries.

First Edition 6-2

(

LIBRARY EPPS

5. Link the subroutines compiled in Step 2 into one or two
library EPFs using BIND, indicating which subroutines are
entrypoints.

6. Build a PMA file listing entrypoints as dynamic links (DYNTs).

7. Assemble the IMA file built in Step 6, generating an object
(.BIN) file containing DYNTs to your library.

8. Use EDB to make the .BIN file generated in Step 7 a
non-force-linked library.

9. Install the .BIN file built in Step 8 in the appropriate
directory.

10. Install the library EPF built in Step 5 in the appropriate
directory.

11. Modify the appropriate entrypoint search list to reference the
library EPF installed in Step 10.

Step 1, entering the subroutines into the system, produces source files
for the compiler or assembler. Step 2, compiling or assembling the
subroutines, uses the source files to produce object files. Step 3,
determining how the library is to be organized, requires you to assess
the way in which individual subroutines in your library need to be
initialized when invoked. Step 4, determining the entrypoints for your
library, requires you to check your entrypoint names against a
Prime-suppLied list of reserved entrypoint names (provided later in
this chapter) and against other library EPFs, not provided fcy Prime,
used at your installation.

Step 5, linking the subroutines using BIND, uses the object files to
produce a library EPF. The file containing a library EPF has the name
library.RUN. The .RUN suffix specifies that the file contains an EPF.
(An alternate suffix for an EPF file, .RPn, is described in Chapter 1.)

Steps 6 through 9 provide the file to be loaded or linked by programs
that are to use your library. They use the LOAD or LIBRARY subcommand
of either SEG or BIND, specifying the .BIN file installed in Step 9, to
resolve references to subroutines in your library to dynamic links
(DYNTs).

Steps 10 and 11 make your library EPF available to whoever uses an
entrypoint search list that specifies your library EPF. Running
programs that encounter dynamic links specifying subroutines that are
entrypoints in your library EPF are automatically connected to your
library EPF. Such programs acquire this ability by loading or linking
the library (.BIN) file installed in Step 9 if the entrypoint search
list names your library EPF.

This chapter describes how to take full advantage of library EPFs
during each of the above steps.

6-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The Program's View of a Library EPF

To a program, a library EPF i s invoked by cal l ing a subroutine that i s
an entrypoint t o that library EPF. Unlike the main entrypoint of a
program EPF, PRIMDS imposes no constraints upon the ca l l ing sequence of
the subroutine.

STEPS IN BUILDING A LIBRARY EPF

This section describes the steps performed in building a library EPF.
Some of the steps require even further detailed explanation for certain
cases; subsequent sections in th i s chapter address these needs.

I t i s important that you read the descriptions of a l l of the steps
before you begin designing and coding your library EPF. In particular,
the entrypoint-naming issues described in Step 4 may impact your design
specifications.

Step 1 - Enter the Subroutines

You enter the subroutines for a library EPF just as you would for a
program EPF, by using a text editor such as EMACS or ED. No
subroutines should be coded as PROGRAM modules; they should a l l be
SUBROUTINE, PROCEDURE, or FUNCTION modules. No restrictions are placed
on their calling sequences by PRIMDS.

Step 2 - Compile the Subroutines

You compile or assemble the subroutines for a library EPF using one of
Prime's compilers or PMA. The compiler must generate 64V-mode or
321-mode code; a PMA program must contain the pseudo-op SEG or SEGR.
These requirements are described in Chapter 7.

Step 3 - Determine How the Library Is to be Organized

You now consider whether the library should be a single program-class
library EPF, a single process-class library EPF, or one of each.
Typically, program-class library EPFs are the best choice.
Occasionally, however, i t improves performance to put subroutines in a
process-class library EPF, as long as they will perform correctly. See
the section below, entitled CHOOSING THE RIGHT TYPE OF LIBRARY EPF, for
detailed information on making the decision between building a single
program-class library EPF, a single process-class library EPF, or two
library EPFs (one of each type).

First Edition 6-4

(

LIBRARY EPFS

The simplest, and often the most appropriate, decision is to build one
program-class library EPF. Only in rare cases does this approach not
produce a working library. Advantages of process-class library EPFs
are primarily in terms of performance.

Step 4 - Determine Library Entrypoints

You now build a list of the subroutines that are to be considered
entrypoints in your library. You will use this list for two purposes:

• To identify entrypoints in the library EM1 during the BIND
session

• To identify external entrypoint references as dynamic links in
programs that use your library EPF

Subroutines that are not made entrypoints to a library EPF cannot be
called by subroutines outside that library EPF, unless their addresses
are provided by other entrypoints in the library EPF via ENTRY VARIABLE
(or similar) functionality.

Prime reserves many names for its own use as entrypoint names. These
names are listed next.

Reserved Names

The complete list of entrypoint names reserved fcy FRItOS is on the
following page. In addition to the names in this list, names
containing a $ symbol are reserved by PRIK)S and Prime-supplied
libraries.

WARNING

Do not attempt to use any of the entrypoints listed unless
other documentation specifically explains it. Using
undocumented PRIM3S subroutine entrypoints may result in
unusual behavior by PRIMDS subsystems. In addition, such
subroutines may be removed or changed at any point without
warning.

Note

Prime guarantees that no new names will be added to the
following list. In other words, no reserved names will be
added to this list; the only changes made to this list will be
the removal of names that are used only internally by Prime
products as the names are changed to have $ symbols in them.

6-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

ACKRCT
ADILQREC
ADOCRD
ADQREC
ADRESS
AD_CMD
ALLOC
APPEND
APRCQD
ATLIST
ATMAIN
ATTDEV
AVAIL
BCKUPB
BSCMAN

an?
CALPCL
CFI
CTRLOG
CKINST
CKNDNM
CLEARS
CLREAD
CLRLIN
CULFLDS
CLSDOC
CMD_POST
CMD.JREL
CNIN
COMftNL
GONTRL
CRAWL_
CREUFD
DATE_A
DCTEXS
DECRJOP
DEFILE
DELAY
DELAY_
DELETE
DELETEjQ
DELQAS
DH3270
DIDNUM
DIRSER
DISPLA
DMIDAS
DMLCP
DNUMID
DOSSUB
DPT I N I
DPTOFF
DRAINjQU
EM3270

First Edition

ENCRYP
EPFJERR
EPF_RL
ERASE
ERROPN
ERRRTN
ERRSET
EVAL_A
EXIT
EXTRAC
FILERR
FILHER
FINDPG
FINDJU
FINDJUID
FNDREC
FNDWRD
FORCEW
FREELDES
FREEJLR
FSCHOC
GALLKS
GCHAR
GETADR
GETENT
GETERR
GETNPG
GETNYB
GETRB3
GETSLT
GET_REPL
GFILKS
GINFO
GQRDNC
GOREAD
GTDOCR
GTWORD
GUSLRS
HASHJD
HASHJUID
ICMTB_
ICPL_
ICS2CT
ID
INCPIR
INTTP1
METJNPX
INITJQ_S
INTCM_
3QNET
IQUSER
ISFEPF
JUSTRT
LCR3RP

LIBTBL
LISTJSRL
LKGCMP
LOCK
LOGJEVEN
LOGLRECO
MCSDAT
MCSTOD
PDVB
MOVE
RDVEB
M3VWDS
MSGCTL
NETCHK
NETFIG
NETPRC
NET3ET
NEWS
NOTDST
NPXPRC
NXTLIN
CAUSER
OERRTN
OPNDFL
OPNDX
OPNQFL
CWL2
P1IB
PlIN
P1CB
PICO
P2UPCS
PAOLBIT
PACK_CHA
PACK_INT
PARS_ATT
PARTCL
PASSWD
PCREAT
PEXTT
PFIL2A
PFLM9E
PHDBG
P I N I T
PINLNK
PK2LDV
PRIBLD
PRICON
PRVSEL
PTRAP
HJTBL
PUTSLT
PUT_flOP
QPARSE

6-6

QPOST
QUTTHD
QUOTEL
ROBASE
R3FALT
RDASC
RDBIN
RDNPAG
RDPRCN
RECYCL
RELGRP
REMANS
REMUSR
REPOST
RE5TART_
RGSTRY
RJDBG
RJMNTT
RJPROC
RMLOCK
RPTSPL
RQUEST
RSTBL
SAL_JE>
SCANB
SCHAR
SEARCELC
SEAROLH
SECBLD
SEGCON
SELAN3
SETATT
SETttAM
SETRBG
SET_SRL
SET_VERS
SFRjCFSC
SFRJiP
SHRLIB
SKLCMD
SLAVE
SLAVER
SCUR3_
SPLCHK
SRWREC
STK_EX
STPNC
STRBL
STRTPH
STUFF
SUBMIT
SWFBK_
SWFItL
SWINTQ

T1IB
T1IN
TLCB
T1CU
TBLRED
TIDEC
TIHEX
TIMAT
TIMREC
TIMSLT
TIEOCT
TM3270
TMDISP
TNOU
TNOUA
TODEC
TOHEX
TONL
TOCCT
TRNRCV
TRTYPE
TRVERS3D
TSATRC
TSTAMP
UDTDRY
UDTF07
U N C M O E
UNLOCK
UNPACKS
UPCASE
UPDATE_S
USERID
USRPRM
VMMSG
VMMSG2
VMMSG3
VREMID
WHATTT
WRASC
WRBIN
WRTTLINE
WRTPG
XLACPT
XLASGN
XLCLR
XLCLRA
XLCONN
XLGGON
XLGWC
XLUASN
XMTRCV

c

,/**s\

LIBRARY EPFS

Step 5 - Linking the Subroutines

You now link the subroutines using BIND to create a library EPF of the
appropriate type, or t o create two library EPFs, one of each type.

For a program-class library EPFf the l ink sequence i s :

BIND library-EPF-filename
LIBMDDE -PROGRAM
LOAD module-1
LOAD module-2

ENTRYNAME name-1 [name-2 . . .]
LIBRARY [special-library-1 . . .] / * i f needed
LIBRARY
RESCLVE_DEFERRED_GOMMDN
MAP [nap-filename] [options]
FILE

For a process-class l ibrary EPF, the l ink sequence i s :

BIND library-EPF-filename
LIBMDDE -PROCESS
LOAD module-1
LOAD module-2

EOTRYNAME name-1 [name-2 . . .]
LIBRARY [special-library-1 . . .] / * i f needed
LIBRARY PROCESSJCLASS
LIBRARY
RESOLVE_PEFERRED_CDMMDN
HAP [map-filename] [options]
FILE

The d i f f e r e n c e s between l i n k i n g a program-class l i b r a r y EPF and a
process-class l ibrary EPF are:

• Use of the LIBMDDE -PROCESS subcommand rather than LIBMDDE
-PROGRAM

• Use of the LIBRARY PROCESSjCLASS subcommand immediately before
the LIBRARY subcommand

6-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

The LIBMODE subooiranand specif ies the type of library EPF to be v^%
generated. The LIBRARY PROCESSjCLASS subcorarnand links a library that)
causes dynamic al location performed by your library EPF to be done from
process^-class, rather than program-class, memory.

Although not required to link a library EPF, the
RESOLVELPEFERREQjQOMMDN and HAP subcommands are recommended for use
when debugging a library EPF. See also the section below ent i t led HOW
TO USE DBG ON A LIBRARY EPF.

An Easy Way to Declare Entrypoints: An easier way t o declare
entrypoints t o your library EPF i s to use the ENTRYNAME -ALL and
ENTRYNAME -NONE subcommands. Between use of these two subcommands,
BIND automatically makes any subroutines linked via the LOAD or LIBRARY
subcommands into entrypoints for the library. /

Therefore, the template you would use for the appropriate section of
the above two build f i l e templates i s :

ENTRYNAME -ALL
LOAD entrypoint-module-1
LOAD entrypoint-module-2

ENTRYNAME -NDNE
LOAD other-module-1 /* if needed
LOAD other-module-2

LIBRARY [special-library-1 . . .] / * i f needed

Make certain that you issue an ENTRYNAME -NONE subcommand before using
the LIBRARY subcommand. Otherwise, you are l ike ly t o produce a library
EPF that either w i l l not execute correctly or that has entrypoint names
that confl ict with Prime-supplied l ibraries .

Step 6 - Building a PMA Entrypoint Fi le

You now build a s ingle PMA f i l e that declares a l l of the entrypoints t o
your library EPF (or both library EPFs) as dynamic l inks . This f i l e
has the format:

* List of dynamic l inks for MYLIBRARY.HJN. ,
SBG {
SYML
DYNT entrypoint-1

(

First Edition 6-8

LIBRARY EPFS

END
SEG
SYML
DYNT entrypoint-2
END

An easy way to build t h i s f i l e i s to enter the entrypoint names into
f i l e named ENTRYPOINTS, one name per l i n e . For example:

INEUJINE
GETjCHAR
NEflJHARJEOR L̂INE
CLEAR_LINE
BACKSEACELJilNE
END_LINE

Now, enter and run the following CPL file to build a file named
ENTRYPOINTS. PMA:

&DATA ED

LOAD EOTRYBOINES
TOP
N;IB SEG : SYML;N;GM 1/ DYNT /FI/ : END/;*
FILE ENTRYPOINTS. PMA
&END

This produces the following ENTRYPOINTS.PMA file when run on the
ENTRYPOINTS file built in the earlier example:

SEG
DYNT
SEG
DYNT
SEG
DYNT
SEG
DYNT
SEG
DYNT
SEG
DYNT

: SYML
INnLLINE

: SYML
GETLCHAR :
: SYML

: END

END

NEWJCHAR_FOR_LINE : END
: SYML
CLEAR_LINE

: SYML
: END

BACKSEACE_JiINE : END
: SYML
END_JiINE : END

6-9 First Edition

AEVANCED IfcOGRAM&ER'S GUIDE, VCLUHE I : BIND AND EPFS
(

Step 7 - Assemble the Entrypoints File (

You now assemble the entrypoints file by issuing the command:

PMA ENTRYPOINTS -LISTING ND

This produoes a file named ENTRYPOINTS.BIN. (You usually do not need
to produce a listing of the file. If you wish to produce a listing,
omit the -LISTING ND specification.) For example:

OK, PMA ENTRYPOINTS -LISTING ND
0000 ERRORS (PMA Rev. 19.4)
OK,

Step 8 - Use EEB to Generate Library File

You now use EEB, the Binary Editor, to generate a new version of the
ENTRYPOINTS.BIN file that does not forcibly load or link itself into
whatever program is using it. A CH, program to perform this step is:

&DATA EEB ENTRYP0INT3.BIN MYLIBRARY.BIN
RFL
COPY ALL
SEL
Qurr
&END

You now have a f i l e named MYLIBRARY.BIN that can be ins ta l l ed as the
library f i l e that programs can load or l ink t o use your library EPF.

For example, i f you named the CPL f i l e shown above FI3LLIB.CIL, and ran
i t on the ENTRYPOINTS.BIN f i l e produced in the earl ier sample PMA
invocation, the following output would result :

OK, RESUME FI3CJLIB
[EEB rev 19.4]
ENTER, RFL
ENTER, OOPY ALL
INmjilNE
NEWLCHAR_FOR_LINE
BACKSERCE__LINE

.BOTTOM.
ENTER, SFL
ENTER, o u r r
OK,

First Edition

GET__CHAR
CLEAR_LINE
END_LINE

6-10

LIBRARY EPFS

Notice how the entrypoint names are l i s t e d , two per l i n e .

See Chapter 10 for more information on ED3.

Step 9 - Insta l l the Library Fi le

You now i n s t a l l the library f i l e , named MYLIBRARY.BIN in the above
example, into the appropriate directory. For system-wide l ibrar ies ,
tiie LIB UFD i s appropriate. For example:

COPY MYLIBRfiRY.BIN LIB>MYLIBRARY.BIN -ND_fiUERY -DTM -REPORT

When a library i s ins ta l led in UFO LIB, programs can load (SEG) or l ink
(BIND) i t by issuing the SEG or BIND subcommand:

LIBRARY library-filename

In the example used, the LIBRARY MYLIBRARY subcommand would be used.

Alternatively, you may wish to place the library f i l e in a directory
common to users in your project. In th i s case, programs must specify
tiie f u l l pathname of the library f i l e when loading or l inking i t . They
may use either the LOAD or LIBRARY subcommand of SEG or BIND with a
f u l l pathname, although the LIBRARY subcommand i s recommended because
i t s name communicates more clearly to someone reading the program's
build f i l e what the purpose of the f i l e i s .

Step 10 - Insta l l the Library EPF

You now ins ta l l the library EPF f i l e bui l t in Step 5 . As with Step 9,
you may i n s t a l l the l ihrary EPF in either a system-wide directory or in
a directory common t o users who are to use i t . The system^wide library
directory for library EPFs i s the LIBRARIES* UFD. For example:

COPY MYLIBRARY. RUN LIBRARIES*>MYL]BRARY.RUN -N0_QUERY -DTM -REPORT

Whether insta l led in the system-wide LIBRARIES* UFD or in another
directory, the library EPF i s not usable unti l the next step, when i t s
f u l l pathname i s added t o the entrypoint search l i s t of users that are
to make use of the l ibrary EPF or of programs that use the l ibrary EPF.

6-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPPS

Step 11 - Modify the Entrypoint Search List

You now modify the appropriate entrypoint search l i s t so that the
library EPF you insta l led in Step 10 i s accessible by the appropriate
users.

If you have insta l led the library EPF in the system-wide LIBRARIES*
UFD, then you typical ly modify the system-wide default entrypoint
search l i s t , SYSTEM>ENTRY$.SR. The following sample session inserts
the search rule LIBRARIES *>MYLIBRfiRY. RUN at the bottom of the
SYSTEM>ENTRY$.SR search l i s t :

OK, ED SYSTEM>ENTRY$.SR
EDIT
BOTTOM
INSERT LIBRARIES*>MYLIBRARY.RUN
FILE
SYSTEM>ENTRY$. SR
OK,

C a u t i o n

Typically, you do not have access to SYSTEM>ENTRY$.SR unless
you are the System Administrator. If you modify it, it is
possible that you might unknowingly render it unusable, such as
by putting one search rule in twice (a duplicate rule). If
this happens, not only will users be affected, but a subsequent
coldstart of the system may render the supervisor terminal
nearly ineffective. In such a situation, you will be unable to
use editor ED to fix the file, as ED references faulted IPs to
call system subroutines via the dynamic linking mechanism.

The solution to this problem is to use the nonshared editor,
NSED, rather than the shared editor ED, to fix the default
search list file. NSED runs under PRIMDS II, and therefore
does not ever reference faulted IPs.

('•*v

Alternatively, you may modify the entrypoint search l i s t of the users
who are to use the library EPF, or ask them to make the modifications
themselves. If these users are using the system-wide default
entrypoint search l i s t , then you must construct an entrypoint search
l i s t for them that includes both the system-wide default search l i s t
and your own library EPF.

First Edition 6-12

LIBRARY EPFS

For example, i f the users a l l have access to a directory named
PROJECILA, in which you have already insta l led the library EPF (and
possibly the library f i l e named MYLIBRARY.BIN), you might type:

OK, ED
INHJT
-SYSTEM
PRCJECT_A>MYLIBRARY. FDN

EDIT
FILE IROJECT_JV>ENTRY$.SR
OK,

After you do t h i s , a l l users who are to use t h i s library must place a
SETLSEAROURDLES command in their LOGIN. CEL or LOGIN.COMI f i l e , as
follows:

SET__SEAROU»LES EROJECT̂ A>ENTRY$

Note

Whether you modify the system-wide default entrypoint search
l i s t SYSTEM>ENTRY$.SR, modify some other entrypoint search
l i s t , or create a new search l i s t , users who are already logged
in must issue the SET_SEAROLFULES command before they can run
a program that uses your library EPF. (A user who has the
appropriate SET_J5EAROiJEOLES command in h i s or her LOGIN.CEL
f i l e may simply issue the INITIALIZELCOMMM3D_JWmONMENT
command, as may a l l users i f you have modified the system-wide
default entrypoint search l i s t .) If a user complains that a
LINKAGE_FAULT$ condition was signaled indicating a fa i lure to
link t o an entrypoint in your library EPF, i t may be that the
user i s not using an entrypoint search l i s t that includes your
library EPF. Ask the user to issue the LISTLSEAROURDLES
command (abbreviated LSR) and ensure that your library EPF i s
l isted therein.

If the user has the correct entrypoint search l i s t , then use
the LIST̂ IBRARY_ENTRYPOINTS command (abbreviated LLEOT) to
ensure that the desired subroutine i s in fact an entrypoint in
your library EPF. See the section below, entitled EXAMINING
ENTRYPOINT LISTS, for more information on this command.

6-13 First Edition

ADVANCED PROGRAMflER'S GUIDE, VOLUfE I: BIND AND EPFS

CHOOSING THE RIGHT TYPE OF LIBRARY EPF

A library EPF must be either a program-class or process-class library
EPF, as described earlier in this Chapter. This section explains how
you determine the appropriate classification for subroutines in your
library EPF.

The decision as to whether a library EPF i s process-class or
program-class i s actually made on a per-subroutine basis, and includes
such factors as:

• How the subroutine uses i t s linkage area

• How procedures external to the subroutine are classified

In general, the simplest decision i s to put a l l of your subroutines
into a program-class library EPF. In most cases, this wi l l produce a
working library EPF, although the performance of the library EPF may
not be as good as i f a process-class library EPF were used.

Performance for a process-class library EPF i s often better than that
of the same subroutines collected as a program-class library EPF
because the linkage area for the library EPF need not be reallocated
and reinitialized each time a program using the library EPF i s run.

However, subroutines in a process-class library EPF must observe
certain restrictions on their use of linkage areas and other external
procedures. These restrictions are:

• A subroutine in a process-class library EPF may not call a
procedure in a program-class library EPF or a static-mode
library.

• Because of the above restriction, a subroutine in a
process-class library EPF may not perform any language-directed
I/O operations. (No PRIMDS-resident subroutine ever performs
language-directed I/O operations; rather, the subroutines that
are called upon to perform language-directed I/O operations call
PRIMDS-resident subroutines to accomplish their tasks.)

• A subroutine in a process-class library EPF should not modify
any data in i t s linkage area, except in certain special cases.

Both restrictions can be difficult to check for in a given subroutine.
PRIMDS does detect and prevent a violation of the restriction against a
process-class library EPF subroutine invoking a program-class library
EPF or static-mode procedure. However, PRIM3S cannot detect a
potentially invalid use of data in the linkage area.

The remainder of this section describes the steps used to determine
whether you want one library EPF of a particular class, or two library
EPFs (one of each class).

First Edition 6-14

LIBRRRY EPPS

In summary, these steps are:

1. Determine the class requirements of each subroutine in your
library.

2. Determine the class requirements of your library EPF using the
subroutine requirements data.

If your library EPF must meet performance constraints, then the f irst
requirement can become somewhat complicated. Process-class subroutines
tend to have better performance than program-class subroutines because
they tend to require complete initialization of tiieir linkage areas
less often, but they must meet more stringent requirements (such as not
being able to call a program-class subroutine).

First, you determine which subroutines must be program-class
subroutines based on two absolute rules l isted below.

Second, you examine the remaining subroutines, and determine which of
those should be program-class subroutines based on their use of static
data.

Third, you consider specific cases where the usage of static data by a
subroutine implies that i t must be in the program class, but in fact
the nature of the static data i t uses allows i t to be in the process
class.

Finally, you consider specific cases where the usage of static data by
a subroutine indicates a need to redesign the subroutine (and probably
i t s external interface) so that i t can be in the process class.

Determining the Class Requirements of a Subroutine

It i s most desirable for a subroutine to work properly as a
process-class subroutine. Process-class subroutines do not incur the
overhead of allocating and initializing their linkage areas each time
they are invoked by a new program.

Instead, their linkage areas are allocated and initialized only the
f irst time the process-class library EPF to which they belong i s mapped
into memoryr and remain valid until the same process-class library EPF
i s unmapped from memory. If a program that uses that process-class
library EPF i s run several times between the mapping of the library EPF
and i t s unmapping, the linkage wil l s t i l l be allocated and initialized
only once.

However, due to the restrictions described above, not a l l subroutines
wil l work when built into a process-class library EPF. For the most
part, a l l subroutines wil l work when built into program-class library
EPFs, which do incur linkage allocation and initialization overhead for
each program invocation.

6-15 First Edition

ADVANCED PROGRAMNER*S GUIDE, VOLUfG I : BIND AND EPFS
(

The following sections are designed t o help you determine, for each f
subroutine, whether i t must be a program-class subroutine or can be in
either class.

This section i s split up into several rules. Some of these rules are
absolute rules that cannot be violated. Other rules apply to most
subroutines, but exceptional cases are l isted or described.

Subsequent sections discuss ways in which a subroutine can be examined
in greater detail to determine if i t i s , or can be made, a
process-class subroutine.

Rule 1 - Restriction on Library Class Mixing; It i s an absolute rule
that a process-class library EPF subroutine cannot cal l a subroutine
within a program-class library EPP or a static-mode library. If this ,
i s attempted, PRIMDS w i l l produce an error message similar t o the I
following:

Error: condition "LEaKAGE-ERRCÊ " raised a t 4342(3)/12506.
Attempt to link t o program c lass library EPF entrypoint "ATTDEV"
from a process c lass EPF.
ERI

I t i s possible for a process-class subroutine to c a l l some other v
subroutine that then c a l l s a program-class or static-mode library
subroutine. However, in most cases, th i s cannot be done because th i s
rule must be reapplied.

Specifically, i f process-class subroutine A c a l l s subroutine B which
ca l l s program-class (or static-mode library) subroutine C, then
subroutine B cannot be a process-class subroutine, or Rule 1 would be
violated. In addition, subroutine B cannot be a program-class or
static-mode subroutine, or again, Rule 1 would be violated when /
subroutine A c a l l s subroutine B. \

This situation w i l l be val id only i f subroutine B i s part of a program
EPF or a static-mode program. PRIMDS w i l l treat the invocation of
subroutine C by subroutine B as being a program-to-program invocation,
and w i l l allow i t , since PRIMDS w i l l be able to properly a l locate and
i n i t i a l i z e the linkage area for the program-class library EPF or
static-mode library containing subroutine C.

However, subroutine A cannot c a l l subroutine B i f i t i s not part of a
library unless the entrypoint for subroutine B i s passed t o subroutine
A as part of i t s cal l ing sequence or through a common area. (For
example, a PLl/G ENTRY VARIABLE declaration provides th i s
functionality.)

Therefore, under most circumstances, once a process-class library (
subroutine i s invoked, only process-class subroutines or PRIMDS direct
entry subroutines can be called until the process-class l ibrary

(

First Edition 6-16

LIBRARY EPFS

subroutine returns t o i t s ca l ler . Exceptions to t h i s statement occur
only when non-library subroutine c a l l s occur during t h i s period.
(Non-library subroutine c a l l s can also occur as a result of a condition
being signaled. See the Subroutines Reference Guide for information on
writing condition handlers.)

Rule 2 - Restriction on Use of Language I/O; If a subroutine makes use
of language-directed I/O, i t must be made a program-class subroutine.
Language-directed I/O includes statements such as READ, WRITE, ENCODE,
DECODE, and OPEN in FORTRAN, HJT, GET, OPEN, CLOSE in PLl/G.

This rule i s , in fact , a corollary to Rule 1 . All Prime-supplied
languages generate subroutine c a l l s t o perform language-directed I/O.
All such languages provide their runtime support of language I/O as
program-class library EPFs. To permit correct management of data
buffers between program invocations, language I/O library EPFs must be
program—class.

Rule 3 - Problem When Storing Data in Linkage Areas: A subroutine that
uses i t s linkage area (s ta t i c storage) to store data w i l l probably not
function correctly i f bu i l t into a process-class library EPF.

Exceptions occur for faulted IPs that are resolved by the PRIMDS
dynamic linking mechanism and for imaginary IPs that are converted t o
actual IPs by the PRIMDS EPF invocation mechanism. Such IPs are
automatically generated by a l l Prime-supplied languages, including PMA.
However, PMA programmers may expl ic i t ly specify an IP in their linkage
text that i s covered by t h i s exception only i f the subroutine never
attempts to modify the contents of the IP.

Other special-case subroutines, such as random number generators, may
be considered exceptions t o th i s rule. This i s discussed later in t h i s
chapter.

Determining the Use of Stat ic Data by a Subroutine

If your product does not have stringent performance cr i ter ia to meet,
i t i s recommended that you not devote time attempting t o determine
which subroutines are process-class and program-class. At t h i s point,
i f you don't know whether some of your subroutines require placement in
a program-class library EPF, you should assume that they do.

However, i f your product does have performance standards t o meet, i t
may be worthwhile to invest the time needed t o determine precisely
which subroutines can and cannot be safely made process-class
subroutines. I t i s even conceivable that redesigning the internal
operation (and perhaps external interface) of a few chosen subroutines
so that they may execute as process-class subroutines would be a
reasonable investment of your time, i f the resulting performance
increase justif ies i t .

6-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The key issue that determines whether a subroutine must run as a
program-class subroutine involves its use of data in the linkage area.
This includes:

• Static data (declared as STATIC in PLl/G, with DATA statement in
FORTRAN, and, in PMA, via LINK pseudo instruction followed fcy
DATA, OCT, DEC, BSS, BSZ, ECB, IP, and so on)

• Common data (declared as STATIC EXTERNAL in PL1/G, with COMMON
statement in FORTRAN, via COMM and EXT pseudo instructions in
PMA)

The reason the linkage area is the crux of the issue is that the
linkage area is not reallocated and reinitialized for a process-class
library EPF when a new program calls a member subroutine. Therefore,
if any of the data in the linkage area for the library is
program-related, the execution of the second program that calls the
process-class library EPF after it is mapped into memory may produce
inaccurate results or cause error conditions. See Chapter 5 for more
information on such restrictions.

If a subroutine stores data in the linkage area, and it uses that data
at any other point, then the subroutine is probably not reentrant. A
non-reentrant subroutine must typically be put in a program-class
library EPF, to prevent it from misbehaving after multiple invocations
by separate programs.

Here is a sample PLl/G subroutine that is not reentrant:

average: proc (number) returns (fixed bin(15));

del number fixed bin(15); /* The newest number. */

del count fixed bin (15) static init(O), /* # of numbers. */
total fixed bin(31) static init(O); /* Total value. */

count=count+l; /* Another number. */
total=total+number; /* Total it up. */

return(divide(total,count,15)); /* Return quotient of average. */
end; /* average: proc */

(

First Edition 6-18

LIBRARY EFFS

This subroutine i s meant t o be cal led in the following way:

dq_average: proc;

del current_avg fixed bin(15),
nextjiumber fixed bin (15);

del tnou entry (char (80), fixed bin(15)) ,
t idec entry (fixed bin(15)) ,
tovfd$ entry (fixed bin(15)) ,
tnoua entry(char(80),fixed bin(15)) ,
average entry (fixed bin (15)) returns (fixed bin(15));

c a l l tnouCEnter numbers. Type 0 to s top . ' , 31) ;
currentL_avg=0;
next_number=-l;

do while (nextuiumber^O);
c a l l tnoua('Enter next number: ' r l9) ;
c a l l t idec (nexrjTumber);
i f nextLJ3umberA=0 then current_avg=average (next_number);
end;

call tnoua('The average is ',15);
call tovf d$(current_avg);
call tnou(M

r0);

end;

The AVERAGE subroutine uses STATIC INIT for its averaging data, so that
the data values are maintained between calls to the AVERAGE subroutine.
It modifies the STATIC INIT storage during execution. This makes it
nonreentrant even within a given program. That is, even within one
program, the AVERAGE subroutine can be used to calculate the average of
only one stream of numbers at a time.

In fact, as it currently exists, it can handle only one stream of
numbers for one entire program execution, because there is no method to
reinitialize the STATIC INIT data. Even if an alternate entrypoint
existed to do this, the subroutine would still be able to manage only
one stream of numbers at a time.

The single-stream restriction on the AVERAGE subroutine is not a
problem if the calling program needs to calculate an average for only a
single stream of numbers at a time. However, it does require that if
AVERAGE is made part of a library EPF, it must be a program-class
library EPF. That way, separate linkage is allocated and initialized
for each different program that uses the AVERAGE subroutine.

If program A uses AVERAGE, and program B is then run and it also uses
AVERAGE, the fact that AVERAGE is in a program-class library will
prevent program B from simply continuing the calculation of average

6-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VCLUJE I: BIND AND EPPS

number values established in program A. Instead, program B w i l l s tart (,
with a fresh copy of the averaging data.

When Nonreentrant Subroutines Should Be Process-class

There are certain cases where a nonreentrant subroutine, as determined
by i t s use of s ta t i c storage, should actually be in a process-class
library EPF. Generally, a subroutine that uses s t a t i c data to store
and use only process-related information, rather than program-related
information, may be a nonreentrant subroutine that can be insta l led in
a process-class library EPF.

Process-related information includes such data a s : username, user
number, user's terminal type, the name of the system, today's date,
l imits on the user's use of command level depth and breadth and on the
number of s ta t i c and dynamic segments, user's project id , and so on.
This information i s generally process-related or system-related, rather
than program-related. Topically, i t does not change during the l i f e of
a process, and hence does not need to be re in i t ia l i zed each time a new
program c a l l s a library EPF subroutine that maintains t h i s type of
information.

However, carefully consider whether the use of a process-related datum
i s in i t s e l f process-related or program-related. For example, today's
date i s usually process-related, but i t may be important for a program
to acquire an up-to-date value, instead of a value that may have been
put into the linkage area some time ago, including (possibly)
yesterday.

For a more tangible exampLe of a subroutine that i s nonreentrant, but
uses only process-related data in the linkage area, consider the
following PL1/G subroutine:

get_username: proc returns(char(32));

del 1 timdat__inf o s ta t i c ,
2 date char(6),
2 time fixed bin (15),
2 t icks fixed bin(15),
2 meters (4) fixed bin(15),
2 tps fixed bin(15),
2 user_number fixed bin(15),
2 user_name char(32);

del have_info b i t (l) s t a t i c in i t ('O'b);

del timdat entry(l ,2 char(6),2 fixed bin(15),2 fixed bin(15),
2 (4) fixed bin(15),2 fixed bin(15),2 fixed bin(15),
2 char(32),fixed bin(15));

First Edition 6-20

LIBRARY EPPS

if *have__inf o
then do;

call timdat(timdat_info,28);
have_info='1•b;
end;

return (user_name);
end;

This subroutine returns the username of the current user. It incurs
the added overhead of calling the system TIM3AT subroutine only when it
is first invoked.

Even though GETJOSERNAME uses static storage in a nonreentrant fashion,
you can see that because all of its static storage identifies
process-wide data (the user name), it can be in a process-class library
EPF. It will be more efficient there than in a program-class library
EPF.

Converting a Nonreentrant Subroutine to be Reentrant

If the performance of a particular group of program-class subroutines
needs to be increased, it is possible that converting them to
process-class subroutines will help result in the needed performance
improvements.

To do this, you must convert the subroutine or group of subroutines to
a reentrant entity. This often requires major internal changes,
probably a rewrite of the target modules, possibly even rewriting into
a different language. For example, PL1/G handles the smooth
construction of reentrant subroutines quite well, due to its ability to
handle pointer manipulation and based structure declaration.

If FL1/G cannot be used, PMA is an alternative. Here, the XB register
is often substituted for references to static data in the linkage area
that were once IB relative.

In any case, such a conversion often requires changes in the external
appearance of the target modules. All uses of the target modules may
have to be changed to accommodate the new calling sequences of the
target modules. For this reason, it is recommended that you design new
interfaces to allow full reentrancy, both inside and outside a single
program.

Simple Conversion; To understand how to convert a target module, we'll
look at the AVERAGE subroutine, shown earlier. A simple conversion
would be to move the small amount of static data out of the linkage
area by making it part of the calling sequence of the subroutine.
Initialization of this data would then be left to tiie calling program.

6-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VCLUME I : BIND AND EPFS
(

The resulting version of AVERAGE would appear thus: \s*\

average: proc (number, count, total) returns (fixed bin(15));

del number fixed bin(15), /* The newest number. */
count fixed bin(15), /* # of numbers. */
total fixed bin(31); /* Total value. */

count=count+l; /* Another number. */
total=total+number; /* Total it up. */

return(divide(total,count,15)); /* Return quotient of average. */
end; /* average: proc */

Because the calling sequence of the subroutine has been changed, the (
method of calling the subroutine would have to be adjusted for all
users of the subroutine, as indicated in the following example:

do_average: proc;

del current_avg fixed bin(15),
avg_number fixed bin(15),
avg_total fixed bin (31),
next_number fixed bin(15);

del tnou entry (char (80), fixed bin(15)),
tidec entry (fixed bin(15)),
tovfd$ entry (fixed bin(15)),
tnoua entry(char(80),fixed bin(15)),
average entry (fixed bin (15), fixed bin (15), fixed bin (31))

returns(fixed bin(15));

call tnou(,Enter numbers. Type 0 to stop.',31); (
currentjavg^O;
avg_jTumber=0;
avg_total=0;
next_jiumber=:-l;

do while (nextL_numberA=0);
call tnoua('Enter next number: ',19);
call tidec (next_jnumber);
i f nextjiumber"=0 then current_avg=average(nextunumber,

avgjiumber, avg_total);
end;

cal l tnoua('The average i s ' ,15);
call tovfd$ (current_avg);
call tnouf'SO);

end;

(

First Edition 6-22

LIBRARY EPFS

r As a result of these changes, the AVERAGE subroutine can become a
process-class subroutine. In addition, the calling program can use i t
for averaging one stream of numbers at a time. The calling program may
use several copies of AVXLN0M3ER and AVQJDOTAL to keep the number
streams separate.

However, this i s a limited form of coping with the nonreentrancy
problem for two reasons:

• It requires a l l calling programs to perform the initialization
that i s best performed by the target module

• To replace large amounts of static data, long (expensive)
calling sequences would be needed

A General Approach to Conversion: A more general approach i s to
separate out the AVERAGE subroutine into three separate procedures.
One procedure, INnLAVERAGE, allocates storage for and init ial izes the
data for a specific number stream. The second procedure, DCLAVERAGE,
actually performs the computation. The third procedure, ENELAVERAGE,
i s called to indicate the end of the calling program's need for the
maintenance of data on a particular number stream, and hence
deallocates the storage for that stream.

To make use of the efficient way in which the Prime 50 Series machines
manipulate pointers, the identifier for a number stream will be a
pointer. The INHLAVERAGE, when invoked, returns a pointer to be used
to identify that particular number stream to DCLAVERAGE and
ENILAVERAGE. The same pointer identifies the area in memory in which
the number stream data i s stored, for use by DCLAVERAGE, and which i s
to be freed by ENILAVERAGE. Now, the AVERAGE module appears as
follows:

init_avg: proc returns(ptr);

del avg__id ptr;

del 1 average_stream based(avg_id),
2 count fixed bin(15), / * # of numbers. */
2 total fixed bin(31); /* Total value. */

allocate average_stream set(avg_id);
count88*);
total=0;
return (avg_id);
end; / * initL_avg: proc */

average: proc (avg_id, number) returns (fixed bin (15));

del avg_id ptr, /* Points to average data structure. */
number fixed bin(15); /* The newest number. */

6-23 First Edition

ADVANCED ERCGRAMER'S GUIDE, VQLUW1 I: BIND AND EPFS
(

del 1 average__stream based (avg_id), \smL
2 count fixed bin(15), /* # of numbers. */)
2 total fixed bin(31); /* Total value. */

count=count+l; /* Another number. */
total=total+number; /* Total i t up. */

return(diviGe(total,count,15)); /* Return quotient of average. */
end; /* average: proc */

encLavg: proc(avg_id);

del avg_id ptr;

del 1 average_jstream based (avg_id),
2 count fixed bin(15), /* # of numbers. */
2 total fixed bin(31); / * Total value. */

free average__stream;
end; /* encLavg: proc */

As with the previous change, because the calling sequence of the
subroutine has been changed, the method of calling the subroutine would
have to be adjusted for a l l users of the subroutine, as indicated in
the following example:

do_average: proc;

del current__avg fixed bin (15),
next_number fixed bin(15),
avgJLd ptr;

del tnou entry (char (80), fixed bin(15)),
tidec entry (fixed bin(15)),
tovfd$ entry (fixed bin(15)),
tnoua entry (char (80), fixed bin (15)),
init_avg entry returns (ptr),
encLavg entry (ptr),
average entry (ptr, fixed bin (15)) returns (fixed bin (15));

call tnou('Enter numbers. Type 0 to stop.',31);
current_avg=0;
next_jiumber=-l;

avg_id=init__avg();

do while (next_number*=0);
call tnoua('Enter next number: ',19);
call tidec (next_number); ,
i f nextL^umber~=0 then current_avg=average(avg_id,nextLJiumber); (,
end;

(

First Edition 6-24

LIBRARY EPFS

call en6Lavg(avg_id);

call tnoua('The average is ',15);
call tovfd$ (current__avg);
call tnou(M,0);

end;

This method has an advantage in that, in the future, the AVERAGE module
may add information to i t s AVERAGE_flOTBER based structure without
affecting any callers of the module. As with the previous method, ful l
reentrancy i s realized even within a single program. To handle two or
more simultaneous number streams, the main program needs only make
multiple calls to INECJVVERflGE and ENELAVERAGE using different AVG__ID
pointers, and use the appropriate pointers in calls to DCLAVERAGE.

Optimizing the General Approach to Conversion; Another example of the
ability of the structure hinted at above i s that i f further
optimization i s needed when multiple number streams are used, the
module can be changed to avoid frequent dynamic allocation of the
AVERAGE_STREAM structure. To reduce use of the memory allocation
mechanism, a more efficient special-case mechanism can be constructed
ty reserving storage in the linkage area. This storage, called
AVERAGE_̂ TATIC, contains 50 potential copies of AVERAGE_STREAM, where
50 i s a number representing a typical figure for the maximum number of
simultaneous number streams in use by a particular product.

Of course, reestablishing the use of STATIC data causes the subroutine
to become nonreentrant once again. However, additional processing can
be performed to manage the single linkage area that the subroutine uses
as a process-class subroutine, so that separate program invocations use
the same static AVERAGE_STREAM pool, without overwriting each other's
data. This produces a form of reentrancy known as active reentrancy.
Most ERIMDS system subroutines also practice active reentrancy, using
methods similar to the one discussed here.

Causing the AVERAGE module to employ active reentrancy can be done
without changing the external calling sequence of the AVERflGE module as
most recently shewn above. However, major internal changes are needed.

An important consideration i s to code the AVERflGE module so that
interruption of the module during the management of the STATIC data
followed ty invocation of another program that called INm_AVERflGE does
not corrupt the linkage area.

6-25 First Edition

ADVANCED PROGRAMSER'S GUIDE, VOLUTE I : BIND AND EPFS
(

When recoded according to these considerations, the AVERAGE module \^%
appears as follows: j

init_avg: proc returns(ptr);

del 1 average__static(50) static external,
2 indexjst fixed bin(15) init((50)0), / * Index within the

array. -1 means not in array, 0
means not in use, >0 means in use
and is index. */

2 countL.into_J>ased fixed bin(15) init((50)0),
2 totaljntcjaased fixed bin(31) init((50)0);

del 1 average_JLnfo static external,
2 next_index fixed bin (15) in i t (l) ,
2 have__endecLearly_inaexes bit(l) init('O'b);

del 1 average_stream based (avg__id),
2 index_into_.static fixed bin(15), / * Index within array. */
2 count fixed bin(15), / * # of numbers. */
2 total fixed bin(31); /* Total value. */

del i fixed bin(15), / * Temporary. */
avg_id ptr, /* Pointer to average data structure. */
concLstore_ok fixed bin(15); /* l=Conditional store worked. */

del concLstor e entry (fixed bin (15), fixed bin (15), fixed bin (15))
returns (fixed bin(15));

avg_id=null();
do while (avg_id=null());

i=nextLindex; / * See if we can get this element. */
if i<=hbound(average_static,l)

then do; / * Some of array left . */
next_index=i+l; /* Either way, increment i t . */ (
concLstor e__ok=concLstor e (index_st (i) , i , 0);
i f concLstor e_jok=l

then avg_ia=addr(average_static(i));
end; /* Or try again. */

else do; / * I t isn't easy, consider searching lower. */
if have__endedLearly_indexes /* Find free element? */

then do i=l to hbound(average_static,l);
concLstor e_ok=condLstor e (index_st (i) , i , 0);
i f concLstore__ok=l

then avg_ia=addr (average__static (i)) ;
end; /* Or try again. */

if avg_id=null() /* If s t i l l not found, allocate. */
then do;

allocate average_stream set(avg_id);
index_into_static?=-l; /* Allocated. */ ,
end; /* if avg_id=null() */ \.

end; /* if i>hbound(average_static,l) */
end; / * do while (avg_ia=null ()) */

First Edition 6-26

LIBRARY EPFS

oount=0;
total=0;

return (avg__id);
end; /* initlavg: proc */

average: proc (avg_id, number) returns (fixed bin (15));

del avg_id ptr, / * Address of the average data structure. */
number fixed bin(15); / * The newest number. */

del 1 average_jstrearn based (avg_id),
2 index_Jjito_static fixed bin(15), / * Index within array. */
2 count fixed bin (15), / * # of numbers. */
2 total fixed bin(31); /* Total value. */

count=count+l; /* Another number. */
total=total+number; / * Total i t up. */

return(divide(total,count,15)); / * Return quotient of average. */
end; / * average: proc */

encLavg: proc (avg_id);

del avg_id ptr;

del 1 average_static(50) static external,
2 index_st fixed bin(15) init((50)0), / * Index within the

array. -1 means not in array, 0
means not in use, >0 means in use
and i s index. */

2 count__into_jDased fixed bin (15) init((50)0),
2 totaL_into_based fixed bin(31) init((50)0);

del 1 average_info static external,
2 next_index fixed bin(15) i n i t (l) ,
2 have_endecLearly_indexes bit (1) init (' 0 • b) ;

del 1 average__stream based (avg_id),
2 index_into_static fixed bin (15), / * Index within array. */
2 count fixed bin(15), / * # of numbers. */
2 total fixed bin(31); /* Total value. */

del i fixed bin(15), / * Temporary. */
concL_store_ok fixed bin (15); /* l=conditional store worked. */

del cont}_store entry (fixed bin (15), fixed bin (15), fixed bin (15))
returns(fixed bin(15));

i f index__into_static>0
then do; /* Pointer to within array. */

i=index_into_static;
index_st(i)=0; / * Free again. */

6-27 First Edition

ADVANCED PROGRAMMER' S GUIDE, VCLUNE I: BIND AND EPFS
(

condLstore__ok=concLstore (next-index, i , i+1); (,
i f concLstore_ok=0 /* Wasn't most recent? */

then have_endecLearly__indexesis' 1' b;
end; /* if index__into__static>0 */

else i f index_into_static=-l then free average__stream;
else stop; / * This i s an error. */

end; /* encLavg: proc */

To provide optimal performance, the INnLAVERAGE and END_jfiVERAGE
procedures have undergone extensive changes. However, the AVERAGE
procedure i tsel f has remained unchanged, except for the new declaration
of the average data structure. AVERAGE does not need to consider
whether the pointer passed to i t identifies storage within the linkage
area or dynamically obtained storage.

Instead, INECJSTERAGE and END_J87ERAGE together manage the external
static (common) storage that i s used for quick "allocation" of
AVERAGE_STREAM structures. The AVERAGE_STATIC array contains 50 copies
of potential AVERAGELSTREAM structures. Now included in each structure
i s an INDEX that identifies whether the structure i s available or not
(within the array), or separately allocated (not within the array).
Separate allocation occurs only when the array of AVERAGELSTATIC i s
fully used, and hence represents a graceful degradation when more than
50 number streams are in use at a time.

An important subroutine used in the newest AVERAGE module i s the
COND_STORE subroutine. This subroutine i s a IMA module that takes a
FIXED BIN (15) location in memory, a new value for that location, and an
old value for that location. The C0ND_STORE subroutine updates the
FIXED BIN(15) location to the specified new value only i f the old value
i s accurate. Otherwise, i t leaves the location unchanged. It returns
a 1 if i t succeeds in updating the location; 0 if i t does not.

Because i t uses the STAC machine instruction, the verification of the
old value and update of the new value are guaranteed to occur in an
atomic fashion, independent of any other processing on the system.

A l is t ing of GONDjSTORE.PMA is found in Chapter 8, as i t i s a useful
subroutine for updating information in shared memory.

Methods such as those l isted above may seem extensive, but they can
result in better throughput for your product. In addition, when the
target of such a procedure includes a number of separate subroutines
that manage a single common area, folding them into one procedure with
alternate entrypoints may improve the maintainability of that portion
of your product.

(

First Edition 6-28

LIBRARY EPFS

Determining the Class Requirements of Your Library EPF

Once you have determined the requirements for all of the subroutines in
the library EEF you wish to build, decide whether you will have one
library EEF, either process-class or program-class, or two library
EEFs, one of each class. On a per-subroutine basis, the decisions are:

• A subroutine that must be in one particular class must be placed
in a library EPF of that particular class.

• A subroutine that can operate in either class can be placed in
either class, but will probably operate more efficiently when
placed in a process-class library EEF.

If you have subroutines in each class that require being in that
particular class, then you must have two library EPFs, one of each
class.

If all your subroutines require being in the program class, or they all
require being in the process class, then you must have one library EPF
of the appropriate class. It is rare for a subroutine to require being
in the process class, although dependencies on being in the program
class are common.

If none of your subroutines require being in the program class, then
you need create only one process-class library EEF. This is the most
desirable situation, as it results in the best performance.

Typically, however, you will have some subroutines that require being
in the program class, and others that can be in either class. In this
case, you can create either one program-class library EPF, or two
library EPFs (one of each type).

The tradeoff depends on the overhead of having PRIflDS maintain
information on a second library EPF, including a search list entry,
certain internal resources on a per-library EPF basis, and two separate
linkage initialization phases for using your library as a whole.

If this overhead is less than the overhead of having PRIMDS reallocate
and reinitialize linkage areas belonging to subroutines that do not
require the program class, then having two library EPFs represents a
reasonable performance tradeoff.

Otherwise, the added overhead of a second library EPF for your library
is not worth the savings of separating the linkage areas, so one
program-class library EPF should be used.

Note

Because PRIMDS does not support dynamic linking to common
areas, you must place all subroutines that reference a
particular common area in the same EEF as the common area
itself. For example, if subroutines A and B wish to

6-29 First Edition

ADVANCED PROGRAMMER'S GUIDE, TflXUME I : BIND AND EPFS
(

coiranunicate via a common area named IOBUF, then both (
subroutines A and B and common area IDBUF must all be linked
into one EPF. If instead you place subroutine A in a
program-class library EPF and subroutine B in a process-class
library EPF, for example, then they each get their own copies
of IDBUF and therefore cannot communicate with each other
through IDBUF.

HOW TO USE DBG ON A LIBRARY EPF

Debugging a library EPF using DBG requires that the object (.BIN) files
that comprise the library EPF be linked into a program EPF along with a
subroutine that serves as as the main entrypoint for the program EPF.
Typically, the main subroutine entrypoint is used only for debugging
and testing of the library EPF, and it does not necessarily require any
code. It should, however, contain declarations for all subroutine
entrypoints in the library EPF.

You may find it useful to also declare storage in the main entrypoint
of the program EPF, to be used during DBG CALL commands to subroutine
entrypoints as storage for the input and output arguments. If you do
this, you should have the main entrypoint initialize all its variables
so that an attempt by the user of DBG to examine some of the data (such
as varying character strings) does not produce garbage output on the /
screen. *

The last statement executed by such a test bed i s , in PLl/G:

CALL SIGNL$('PAUSE$,,NCJLL(),0,NULL(),0,,C000,b4);

In FIN or F77, use a PAUSE statement.

This signals a condition that i s intercepted by DBG, causing DBG to
enter subcommand level without finishing execution of the program.
(When the main program finishes, access to the variables declared
within i t are lost .)

A sample main entrypoint subroutine might be:

testjDe6Lfor^xyz_JLibrary: proc;

/ * Declare a l l the library entrypoints. */

del xyz_input_ooordinates entry (fixed bin (15), fixed bin(15)),
xyzjaLot entry(ptr,fixed bin(15),fixed bin(15)),
xyzjupdate entry (ptr), /
xyz_output_.gr aj*i entry (ptr), V
xyz_delete_juser entry (char (32) var);

(

First Edition 6-30

http://xyz_output_.gr

LIBRARY EPFS

/ * Declare storage used for library entrypoints. * /

del x fixed bin (15), / * For XrZLJNPOTLOaORDnffiirES. */
y fixed bin (15),
graph_ptr ptr , / * For X3f3_UHATE and XYZLCOTPOTLGRAFH. */
user_name char (32) var; / * For XYZJDELETEJQSER. */

/ * Declare grarh structure. */

del graph(24,80) char(l) ;

/* Declare SIGNL$ subroutine. */

del signl$ entry (char (32) var, ptr, fixed bin (15), ptr, fixed bin (15),
bit (16));

/* Initialize variables. */

x=0;
y=0;
graph_ptr=addr (graph);
user_name=' •;
graphs1 ' ;

/* Now pause, invoking DBG subcomnand level. */

^ call signl$(,PADSE$l,null(),0,null(),0,,C000tb4);

/* If user continues, run the game. */

x=l;
do while (x*=0);

ca l l xyz_input_coordinates(x,y);
i f x>=l & x<=80 & y>=l & y<=24

then c a l l xyz_plot(graph_ptr,x,y);
end; / * do while (x"=0) * /

c a l l xyz__output_jgrarh(grariuptr);
do whi le(' l*b);

c a l l signl$(,PADSE$,,null() ,0 ,nul l () , 0 , ,C000,b4) ;
c a l l xyz__update(grariuptr);
ca l l xyz_output_graph(graph_ptr);
end;

/ * End of t e s t bed. */

end;

6-31 First Edition

ADVANCED PROGRAMER'S GUIDE, VOLUNE I: BIND AND EPFS

Build the test bed program EPP by linking the main test bed subroutine (
with the object f i l e s used that comprise the library EPF. Often, type:

DBG test-bed-program
RESTART

The RESTART command causes the work area variables to be initialized.
The main program i s then suspended, returning you to DBG mode. At this
point, you can either G0OT3NUE the main program to perform typical
system or unit tests , or use the CALL subcommand to test the behavior
of specific subroutines in your library*

ENTRYPOINT SEARCH LISTS

PRDDS makes the connection between a library EPF and a program that
wishes to use the library EPP when the program attempts to call a
subroutine in that library EPF. This causes the dynamic linking
mechanism to be invoked. The dynamic linking mechanism i s described in
Chapter 2.

When the dynamic linking mechanism i s invoked, i t f irst searches the
l i s t of internal PRIMDS entrypoints. If the desired subroutine i s not / ^
found there, the dynamic linking mechanism uses an entrypoint search \^^
l i s t to direct i t to library EPFs that are to be searched for the
desired subroutine. In addition, the search l i s t specifies at what
point the static-mode libraries are to be searched, if they are to be
searched.

Each user has an in-memory copy of an entrypoint search l i s t . This
in-memory copy i s loaded from a f i l e on disk with the name ENTRY$.SR or
with a name ending in ,ENTRY$.SR. The f i l e i s loaded into memory
either: (

• When the f irst dynamic link for a user i s encountered

• When a user issues the SET_SEHOLRULES command (abbreviated
SSR)

If the first dynamic link i s encountered before a user issues the
SET_SE2RCH_i&JLES command after logging in, PRIMDS loads the default
entrypoint search l i s t , which has the pathname SYSTEM>EWERY$.SR.

A user may use the SET_SEARCH_RULES command to switch to a new
entrypoint search l i s t or to return to the default entrypoint search
l i s t .

Typically, the default entrypoint search l i s t indicates that
system-wide library EPFs (in the LIBRARIES* UFD) are to be searched \^H
f irst (after internal PRIMDS entrypoints, which are always searched /
before any libraries l isted in the entrypoint search l i s t) . These

First Edition 6-32

LIBRARY EPFS

l i b r a r i e s include the system l i b r a r y (SYSTEmJBRARY), the FORTRAN I/O
l i b r a r y (FORIRAKLKLLIBRARY), the appl ica t ion l i b r a r y
(APPLICATBDISLLIBRARY), and so on.

At some point , the defaul t search l i s t usual ly d i r e c t s t h a t the
static-mode l i b r a r i e s a r e t o be searched. Although Prime supplies
several individual static-mode l i b r a r i e s , these l i b r a r i e s a r e t r ea t ed
by the search l i s t mechanism as one l i b r a r y . If the des i red subroutine
i s s t i l l not found, the defaul t search l i s t may specify further l i b r a r y
EEFs t h a t a r e t o be searched. If the end of the search l i s t i s reached
and the t a r g e t subroutine has s t i l l not been found, the dynamic l ink ing
mechanism s ignals the condition LINKAG ĴFAULT$, which typ ica l ly
produces an error message such a s :

Error : condit ion "LrNKAGE-FAUI/̂ 11 ra i sed a t 4243(3)A031.
Entry name "INnLLINE" not found while attempting t o resolve
dynamic l ink from procedure "TRY^ASYNC" •
ER!

An entrypoint search l i s t cons is t s of one or more search r u l e s . A
pa r t i cu l a r l i n e within a search l i s t i s refer red t o a s a search ru l e
(s ingu la r) .

To display your current search l i s t , use the LIST_j5EARaL_RULES command
(abbreviated LSR). For example: r

OK, LISTJ5EARQQDLES

Pathname of template: <SYSDSK>SYSTEM>ENTRY$.SR

LIBRARIES*>SYSTEMJiIBRARY. RUN
LIBRARIES*>APHiICATlDN_J,IBRARY.RDN
-STATICJDI2LLIBRARIES
LIBRARIES*>P!Liaj.IBRARY. RUN
LIBRARrF^*>FORTRAN_lD_J,IBRARY. RUN
LIBRARI£S*>O0&liyDN_ENVEL0PE. RUN
LIBRARIES*X)PPIMIZER. RUN
LIBRARIES*XX)IH5EN_C]0MM)N.RUN
LIBRARIES*>CODEGENV. RUN
LIBRARIES*XX)DEGENI. RUN
LIBRARIES*XBILJiIBRARY. RUN
LIBRARIES*XXU,IBRARY. RUN
LIBRARIES*>PASCM4J,IBRARY. RUN
LIBRARIES*>VRPGLJ.IBRARY. RUN

OK,

As shown in the above sample, the defaul t system search l i s t comes from
the f i l e SYSTEM>ENTRY$.SR. All entrypoint search ru l e f i l e s must be
named ENTRY$.SR, or end in .ENTRY$.SR, t o ident i fy them as l i b r a r y
entrypoint search rule f i l e s .

6-33 Firs t Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

Notice t h a t the static-mode l i b r a r i e s a re iden t i f i ed using the /^%
-STATIQJDDEUilBRARIES option.

The f i l e containing the search ru les , SYSTEM>ENTRY$.SR, i s a t e x t f i l e
t ha t contains the l i n e s shown i n the above sample. As with other t e x t
f i l e s , the f i l e can be modified by using t e x t e d i t o r s such as ED or
EMACS. The f i l e corresponding t o the above sample search l i s t i s shown
below:

LIBRARIES*>SySTEPU,]BPMRy. HJN
LIBRARIES*>APELICAT]DKLJiIBRARY. HJN
-STATICJODE.J.IBRARIES
LIBRARIES*>PL1Q_X.IBPARY. HJN
LIBRARIES*>PORI!RAN_JPLJJBRARY. HJN
LIBRARIES*XX5MM)R_ENVEL0HE. HJN
LIBRARIES*X)PPIMIZER. HJN
LIBRARIES*X]ODEQE{i_a)}©DN.HJN
LIBRARIES*XX)DEGENV. HJN
LJBRARIES*XX)DEGENI.HJN
LIBRARIES*XB1U.IBRARY. HJN
LIBRARIES*X:qĵ IBRARY. HJN
L3BRARIES*>PASCMlJJIBRARY. HJN
LIBRfiRIES*>VRKLJiIBRARY. HJN

The ordering of individual ru les i s important, as i t r e f l e c t s the order
in which the l i b r a r i e s a re searched. The search order i s important for
performance reasons, as frequently-cal led subroutines (such as the
subroutines i n SYSTEPUiIBRARY) should requi re the shor tes t search time
possible . In addi t ion, the search order i s important when naming
conf l ic t s occur between l i b r a r i e s — the order in which the conf l ic t ing
l i b r a r i e s appear decides which copy of a subroutine i s ac tua l ly
invoked.

Set t ing Your Own Search Rules

Sett ing your own pr iva te search ru les i s important when you a r e
developing a l i b r a ry EPP. Only by updating your search ru les do you
enable programs t h a t you run t o be able t o c a l l , or l i nk t o ,
subroutines i n your l i b ra ry EPF. This sec t ion discusses how t o s e t
your own search r u l e s .

F i r s t , you crea te your own search ru le f i l e . I t must be named
ENTRY$.SR, or end in .ENTRY$.SR, to be considered a va l i d entrypoint
search rules f i l e .

{

First Edition 6-34

LIBRARY EFFS

The simplest form of this file is:

-SYSTEM
MYOED>MYLIBRARY.PUN

The -SYSTEM rule specifies that the standard system search rules, found
in SYSTEM>ENTRY$.SR, are to be searched, and then the library EPF
specified is to be searched. The contents of SY£TEM>ENTRY$.SR replace
the -SYSTEM rule in memory at the time you issue the SETJSEaRCELRULES
command, not later when dynamic linking takes place.

Keep in mind that these lists are searched only when the dynamic
linking mechanism is actually invoked. Until a subroutine in your
library EPF is called, it may not necessarily be mapped into memory.

Note

The -SYSTEM r u l e a f fec ts the ordering of the search only i f the
-NO_SYSTEM option i s specified on the SET_SEARCff_RULES command
l i n e , as described below. Otherwise, -SYSTEM i s ignored, and
the search ru les i n the defaul t entrypoint search l i s t a r e used
before the search ru les i n the personal entrypoint search l i s t .

Although -SYSTEM i s ignored, you should place i t i n the f i l e as
shown, j u s t in case somebody accidenta l ly speci f ies the
-NQJ3YSTEM option on the SET_SEARCELRULES command l i n e . The
side ef fec ts of having only one search ru le in an entrypoint
search l i s t a r e very strange and d i f f i c u l t t o iden t i fy .

A more complex method of crea t ing your search ru les f i l e i s t o ac tua l ly
l i s t a l l of the l i b r a r i e s t o be searched, in the order you d e s i r e . For
example:

MY(JFD>MYLIBRARY. RON
LIBRARIES *>SYSTEM_LIBRARY. RUN
LIBRAR]ES*>FORTRAN_JiIBRARY. RUN
LIBRARIES*>FORTRAN_ID_J«IBRARY. RUN
LIBRARIES*>APELICAT3DN_JiIBRARY. RUN
-STATIQJDraLLIBRARIES

This has an effect s imilar t o the previous search ru les f i l e , except
t h a t the l i b r a r y EPF MYUFD>MYLIBRARY.RUN i s searched before any other
l i b r a r y i s searched, with the exception of in te rna l PRIMDS en t rypoin t s .

Once the search ru les f i l e i s created, you e s t ab l i sh i t for the
duration of your login session using the SET_J5EARCELRULES command.

6-35 F i r s t Edi t ion

ADVANCED EROGRAM&ER'S GUIDE, VOLUME I: BIND AND EPFS

The format of this command is:

SETJSEAROUULES \ search-rules-fi le . ENTRY$ [-NCUSYSTEM]
SSR I

This changes your current search l i s t to the search rules specif ied in
search-rules-file.ENTRY$.SR. You w i l l revert t o the standard system
search rules (In SYSTEM>ENTRY$.SR) only when you log in again, when
your command environment i s re ini t ia l ized, or when you issue the
command:

SETJSEARCEUFULES -DEFAULT ENTRY$

To make changes t o your search l i s t permanent, update your LOGIN.CPL or
LOGIN.QDMI f i l e to include the appropriate SETLSEAROLPULES command.

The -NCUSYSTEM option, when present, indicates that the default system
search l i s t , SYSTEM>ENTRY$.SR, i s not to be automatically inserted in
front of your search rule when you issue the SET_J3EAROL_FDLES command.
You should use t h i s option only i f you have used a copy of tiie default
system search l i s t t o build your own search rule. Careless use of tiie
-NQJSYSTEM option may cause erratic behavior in Prime-supplied
programs.

Caution

Do not use the SETJSEAROLPULES command while there are active
program or library EM'S in your command environment, except to
add new library EPFs that you are developing t o the end of the
l i s t (after the -SYSTEM rule) • I t i s recommended that you use
the INrriALIZEjOOMMAND_ENVIRONMENT command before each use of
SETjSEAROiJSJLES. I t i s not intended for the active search
l i s t of a user to be frequently changed. Deleting or modifying
particular rules in the search l i s t while act ive EPFs abound i s
l ike ly t o cause inconsistent program behavior.

If your login program (LOGIN.CH,, L0GIN.O0MI, LOGIN.HJN, or LOGIN.SAVE)
se t s up your search rules, then use of the
INITIALIZE_a5MMAND_ENVIR0NMENT command, which invokes your login
program, also causes your search rules t o be se t up.

In th i s case, either modify your personal copy of the search rules so
that your login program uses the correct copy, or modify your login
program to use the new copy that you have constructed.

First Edition 6-36

LIBRARY EPPS

Advanced Use of Entrypoint Search L i s t s

In some cases , t he re may be th ree l e v e l s of entrypoint search l i s t
a c t i v i t y !

• The system-wide search l i s t , maintained by the System
Administrator

• The search l i s t for a pa r t i cu la r appl ica t ion or pro jec t , which
changes r e l a t i v e l y frequently

• A user who has h i s or her own l i b r a ry EEFs and who therefore has
a personal search l i s t , y e t needs t o a l so u t i l i z e the other two
search l i s t s

In t h i s case, the user might have d i f f i cu l ty maintaining h i s or her
personal search l i s t so t h a t i t re f lec ted the l a t e s t changes for the
appl ica t ion or project he or she i s associated wi th .

A so lu t ion t o the problem i s t o place search ru les spec i f i c t o the
appl ica t ion or project i n a cen t ra l entrypoint search l i s t f i l e , Then,
personal search l i s t s can use the special ru le -USE to refer t o the
project l i s t .

For example, a project-wide entrypoint search l i s t f i l e named
ERQJECT_jA>EOTRY$.SR micfrt read;

PRQJ ECT_jA>ASYNC_J.INE. RUN
ERCUECT_J\>X. 25JCDMM5. RUN
raCff ECT_J\>SCKEE»OORMS. RUN

A personal entrypoint search l i s t f i l e might then read:

-SYSTEM
-USE IRarEOLA>ENTRY$
MYDIR>MYLIBRARY. RUN

Anytime t h e SETJSEARCHLRULES command i s i s s u e d for t h e p e r s o n a l
entrypoint search l i s t f i l e , the project-wide entrypoint search l i s t
f i l e i s automatically included.

This allows t he projec t leader of IRQJEOLA t o change the project-wide
search l i s t f i l e without having t o ask users on the system who have
t h e i r own personal entrypoint search l i s t f i l e s t o update t h e i r f i l e s .

6-37 F i r s t Edi t ion

ADVANCED PROGRAMMER'S GUIDE, VCLUME I : BIND AND EPFS

EXAMINING ENTRYPOINT LISTS

You can examine the l i s t of entrypoints for either a l ibrary EPF or a
particular library (.BIN) f i l e .

Examining Entrypoints in a Library EPF

You may examine the l i s t of entrypoints f c c a library EPF by using the
LIST_LIBRARY_ENTRIES command (abbreviated LLEOT). This i s useful when:

• You want to check other library EPFs use at your installation
for possible conflicts with names you intend to use as
entrypoint names

• You want to check that you have declared a l l entrypoints in your
own library EPF correctly

• You want to determine in which library EPF a particular
entrypoint ex i s t s

Checking a Particular Library EPF

To check a particular library EPF for whether i t declares a particular
name as an entrypoint, or to l i s t a l l of i t s entrypoints, use the
command:

LKT_JJBRARY_JNTRIES epf-filename [-EOTRYNAME name . . .]

I t does not matter whether the library EPF you are checking i s yours or
not.

The library EPF i s epf-filename. You may specify as many as eight
entrypoint names (name) to search for, or you may leave off the
-ENTRYNAME specification to display a l l of the entrypoints for the
l ibrary.

Locating a Particular Entrypoint

To determine in which library EPF a particular entrypoint e x i s t s , use
the following form of the L1STJLIBRARYJENTRIES command:

LIST.JJIBRARYJNTRIES -ENTRYNAME name . . ,

First Edition 6-38

LIBRARY EPFS

All library EPFs specified in your entrypoint search list are checked
for the existence of the entrypoint named name. (You may specify as
many as eight entrypoint names.)

If any library EPFs specified in your entrypoint search list are
inaccessible for some reason, such as when a library EPF does not not
exist in the specified directory, L35Ti_LIBRARY_EmRIES displays an
error message. Therefore, HST_JiIBRARY_EOTRIES may be used to verify
the correctness of an entrypoint search list.

THE LIBRARY EPF MECHANISM

Hhis section describes specific aspects of the EPF mechanism that apply
only to library EPFs. Thorough familiarity with the description of the
EPF mechanism found in Chapter 3 is a prerequisite for understanding
this section.

Specifically, this section describes:

• The automatic mapping of library EPFs during dynamic linking

• How PRIMDS decides whether to skip Phases 5 and 6 of the EPF
mechanism for a library EPF

• Storage allocation issues relating to library EPFs

The Automatic Mapping of Library EPFs

The only way a library EPF is accessed by another program is by
encountering a dynamic link (via a faulted IP) that identifies, as its
target, an entrypoint in the library EPF.

The dynamic linking mechanism, described in Chapter 2, detects the
faulted IP. After it has searched the internal PRIMDS entrypoints for
the desired subroutine, it uses the user's entrypoint search list to
determine where to look for the desired subroutine next.

Each rule in the entrypoint search list is either:

• The pathname of a library EPF

• The rule -STATICLJODELLIBRARIES which indicates that the
static-mode libraries are to be searched

• The rule -SYSTEM which indicates that the default entrypoint
search list, SYSTEM>ENTRY$.SR is to be searched; this list has
in it only rules of the first two types listed above

6-39 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

When the dynamic linking mechanism encounters a pathname rule, it (̂
checks to see whether the library EPF identified by the pathname is
already mapped in. If it is not, the dynamic linking mechanism must
map the library EPF into memory (Phase 4 of the life of an EPF, as
presented in Chapter 3) before it can search its list of entrypoints.

Once the library EPF is mapped in, the dynamic linking mechanism
searches its list of entrypoint names to see if it contains the desired
subroutine. If not, the library EPF remains mapped-in but inactive. A
library EPF is removed only by a user command (such as REMDVEJBPF) or a
call to the EPF$DEL subroutine.

If the library EPF does contain the desired subroutine, the dynamic
linking mechanism does not need to map it in because it has already
been mapped in. Instead, the dynamic linking mechanism checks to see
if it needs to allocate and initialize linkage for the EPF, as
described next.

Phases 5 and 6 of the EPF Mechanism

In the life of an EPF, presented in Chapter 3, Phases 5 and 6 are:

5. The linkage (impure) portion of the EPF is allocated
(EPF$ALLC).

6. The linkage (impure) portion of the EPF is initialized
(EPF$INIT).

Each time the dynamic linking mechanism processes a dynamic link to a
library EPF, it must determine whether it needs to allocate and
initialize the linkage (impure) portions of that EPF. This decision is
primarily based upon whether the library EPF is program-class or
process-class, and whether it is already in use (by the program or by
the process).

Program-Class Library EPF; For a program-class library EPF, the
dynamic linking mechanism checks to see whether the program invoking
the library EPF has already linked to the same EPF. If it has, then
the impure portions of the library EPF that correspond to the program
have already been allocated and initialized, and Phases 5 and 6 are
skipped.

The impure portions of a process-class library EPF are deallocated
whenever the user changes command levels, unless the library EPF is in
use by a suspended program. (This behaviour may change at future
Revisions of PRIMOS.)

First Edition 6-40

LIBRARY EPPS

Process-Class Library EFF: For a process-class library EPF, the
dynamic linking mechanism checks to see whether the EPF has already had
its impure portions allocated and initialized. If it has, then Phases
5 and 6 are skipped. Even if a different program caused the allocation
and initialization of the EPF, Phases 5 and 6 are skipped, because only
one copy of the impure portions of a process-class library EPF are kept
for a user, and they are not reinitialized when a new program starts
using the EPF.

Impure portions of a process-class library EPF are deallocated when:

• The user logs out.

• The user explicitly removes the process-class library EPF fcy
using the REM3VE_EPF command.

• The user's command environment i s reinitialized, either
explicitly (via the INITIALIZEjaOMMRND__ENVIRCKPEOT command) or
implicitly (as a result of an error condition detected by the
command environment and identified as being unresolvable).

However, a process-class library EPF that i s s t i l l in use by a
suspended or running program cannot have i t s impure portions
deallocated.

Storage Allocation Issues

The Prime 50-Series architecture allows the dynamic allocation of stack
space during procedure call . In addition, PRINDS allows the dynamic
allocation and deallocation of memory via explicit requests by a
running program.

Dynamic memory i s allocated during program runtime as a result of
either:

• Compiler-generated requests for temporary storage, such as for
the storing of a temporary character string during the execution
of a string concatenation operation

• Program-directed requests for memory, such as via the ALLOCATE
statement in PLl Subset G

Normally, memory dynamically allocated by a program i s automatically
deallocated (freed) by PRIMDS when the program terminates. In
addition, any memory dynamically allocated by program-class library
EPFs invoked by that program i s also deallocated.

However, memory dynamically allocated by a process-class library EPF
roust not be deallocated by PRIMDS when a program terminates. This i s
because the linkage portion of that EPF, which may contain pointers to
the dynamically allocated memory, i s not deallocated; i t i s instead
reused.

6-41 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Therefore, PRIMDS must distinguish between a program-class l ibrary EPF
and a process-class library EPF when al locating memory t o ensure that
i t does not, la ter , automatically deallocate memory acquired by a
process-class library EPF,

This dist inct ion i s made during the linking of the l ibrary EPF. For a
process-class library EPF; using the LIBRARY PROCESS_CLASS subcommand
speci f ies that dynamically allocated memory i s t o be acquired from a
special memory pool, cal led process-class storage. No memory from th i s
pool i s ever expl ic i t ly deallocated by PRIMDS except during logout and
command environment in i t ia l i za t ion .

If the LIBRARY PROCESS_CLASS subcommand i s not used, as for a
program-class library EPF, dynamically allocated memory i s acquired
from the program-class storage pool used by program EPFs. Memory
allocated from th i s pool By a particular program
deallocated by IRIMDS when the program terminates.

i s automatically

If a process-class library EPF i s bui l t without the LIBRARY
PROCESSjCLASS subcommand, then any language-driven al location, either
expl ic i t ly via statements such as ALLOCATE in PL1/G, or implic i t ly via
compiler-generated al location for temporary storage, w i l l f a i l when the
library EPF executes. The failure w i l l be in the form of a
LINKAGFL_ERROR$ condition raised. The condition i s raised because the
process-class library EPF attempted t o l ink to a program-class library
EPF in which the program-class allocator resides.

Caution

A pointer to storage that has been dynamically allocated as
program-based storage should not be passed t o a process-class
subroutine i f that subroutine stores the pointer in linkage
area or in dynamically allocated memory. Similarly, the
address of a program-class entrypoint should not be passed t o a
process-class subroutine unless the subroutine stops using the
address when i t returns t o i t s ca l ler .

In general, a pointer to object A should never be passed t o
subroutine B i f the l i fe-span of the storage used by subroutine
B to hold the pointer to object A may exceed the l i fe-span of
object A i t s e l f . Otherwise, the termination of object A
followed by the continued execution of subroutine B may result
in the reference by B to the (nonexistant) object A, producing
unpredictable (and invariably incorrect) resul ts .

While th i s i s a general principle of programming methodologies,
i t applies specif ical ly to the interactions between
program-class subroutines and process-class subroutines.

(

First Edition 6-42

7
Coding Guidelines

for EPFs

This chapter describes the coding guidelines that you should follow
when writing subroutines or main programs that are going t o be bu i l t as
EFFs. None of these guidelines preclude the use of these subroutines
and main programs i n static-mode applications bu i l t with SBG except as
otherwise noted.

Specif ically, t h i s chapter describes:

• How to write modules in Prime-supplied high-level languages for
EPFs

• How to write modules in PMA (Prime Macro Assembler) for EPFs

WRITING MODULES IN HIGH-LEVEL LfiNGUAGBS FOR EPFS

Most Prime-supplied language compilers produce EPF-compatible object
(•BIN) f i l e s . These languages include:

• F77

• BTN (when using the -64V or -DYNM options)

• Pascal

• PL1/G

• VRPG

7-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS

• CBL

• C

Using these compilers always produces EPP-compatible object f i l e s . An
exception i s the FTN compiler when the -PBECB option i s specified. If
-PBECB i s specified on the FTN command line, BIND produces a warning
message when the generated object f i l e i s linked:

Warning: ECB MYPRCG loaded into PROC segment.

If tiiis warning message appears, it indicates that the EPF is not
likely to successfully execute when invoked.

When the -PBECB option is used with compilers other than FTN (for those
compilers that support the option), the compilers mark the compiled
modules as impure. BIND places procedure text for impure modules in
the linkage area in specially marked segnents called IMPURE segnents*
This allows PRIMOS to modify the ECBs when the program is executed,
while preventing the procedure text for such modules from being shared
between users and from being mapped directly from the file system disk.
Therefore, while -EBECB may enhance the performance of a shared
static-mode application, it typically reduces the performance of an
EPF.

Writing the Main Entrypoint of a Program EPF

You write the main entrypoint of a program EPF exactly as you would
write a subroutine. You may use the PROGRAM statement (instead of the
SUBROUTINE statement) in F77 or the OPTIONS (MAIN) keyword (on the
PROCEDURE statement) in PLl/G if you desire. However, neither of these
conventions is required for a main entrypoint. Requirements for the
calling sequence of main entrypoints are described in the Programmer's
Guide to BIND and EPFs and in Volume III of this series.

Note that a program built via SEG in a fashion that produces a
RESUMEable static-mode runf ile typically requires the main entrypoint
to be named MAIN. No such requirement exists for BIND and EPFs;
however, you may wish to keep the SEG requirement in mind if you intend
to use a main entrypoint in both the EPF and static-mode environments.

WRITING MODULES IN PMA FOR EPFS

This section summarizes basic concepts of PMA (Prime Macro Assembler)
programming, and then discusses specific requirements for writing PMA
subroutines that are to execute as EPFs.

First Edition 7-2

(

CODING GUIDELINES FOR EPFS

Basic Concepts of PMA Programming

A PMA source file is referred to as a module. It may contain one or
more subroutines. When a module is assembled (using FMA), an object
file is generated, usually with the .BIN suffix on its file name. This
object text consists of:

• Nodule description information

• Procedure text for each subroutine

• Linkage text for each subroutine

• Stack and parameter allocation information for each subroutine
entrypoint

• Linkage information for each subroutine entrypoint

• External linkage information, including references to common
areas and other subroutines

You tell PMA which part of the module you are building by including
special pseudo instructions in the PMA source code. Pseudo
instructions are directives to the assembler; usually, they change the
way in which subsequent lines in the source file are interpreted.
Pseudo instructions themselves may or may not cause specific data (such
as instructions or storage allocation information) to be generated in
the object text.

All PMA modules must have the END pseudo instruction as the last line
in the file. PMA modules that serve as main entrypoints for a program
(whether an EPF or a static-mode program) must name the main
entrypoint's ECB in the operand field of the END pseudo instruction.
No comment lines or blank lines may follow the END pseudo instruction.
Other important pseudo instructions are described below.

PMA subroutines that are to be linked into EPFs are usually constructed
according to the following template:

Source Text Meaning

* Comment lines describing the subroutine

SEG or SEGR Pseudo instruction to specify a V-mode or
I-mode module

SYML Optional pseudo instruction to turn on long (as
many as 32 character) symbol names

RLrr Optional pseudo instruction to cause placement
of literals in procedure text

7-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPFS
(

ENT

LINK

ECB

DYNM

EXT

PROC

instructions

LINK

data

END

Optional pseudo instructions to export names
for reference by external modules

Pseudo instruction to switch to linkage text
generation for placement of the ECB

Pseudo instruction to generate the ECB itself,
and, optionally, additional ECBs for alternate
entrypoints or internal subroutines

Pseudo instructions to specify stack frame
allocation

Optional pseudo instructions to specify
external symbols

Pseudo instruction to switch back to generating
procedure text

The procedure code of the module

Optional pseudo instruction for switching to
linkage text generation

Various address definition, data definition,
and storage allocation pseudo instructions
(optional), to describe the format and data for
the link frame

Pseudo instruction to delimit the end of the
module and optionally designate the main
entrypoint of the module

The remainder of this section describes portions of the object text and
of the above template that are specifically related to coding a PMA
module for execution within an EPP. See the Assembly Language
Programmer's Guide for further information on PMA. For information on
the instruction sets and architecture of the Prime 50 Series machines,
see the System Architecture Reference Guide.

Use of SEG or SEGR: The first
either the

non-comment line of a proper PMA
subroutine must be either the SEG pseudo instruction (for a V-mode
subroutine) or the SEGR pseudo instruction (for an I-mode subroutine).
If this is not the case, BIND refuses to link the object text (.BIN
file) generated by assembling the subroutine via PMA. Additionally,
the keyword PURE or IMPURE should follow the SEG or SEGR keyword on the
same line, as described below in the sections on Impure PMA Module
Restrictions and Pure PMA Modules. If neither PURE nor IMPURE is
specified, the default is PURE.

First Edition 7-4

C0EHN3 GUIDELINES FOR EPFS

Procedure Text: The procedure text for a subroutine consists of the
instructions that make up the body of the subroutine. In a IMA
subroutine, procedure text generation is specified via the pseudo
instruction:

PROC

Linkage Text: The linkage text for a subroutine consists of static
data used and modified by the subroutine. Only one copy of linkage
text exists for a subroutine within a program or library, even if tiie
subroutine invokes itself recursively. Linkage text generation is
specified via the pseudo instruction:

LINK

Stack and Parameter Allocation Information: The IKNM pseudo
instruction is used to specify the allocation of the stack frame for
the module. The stack frame is also used to hold the argument list
pointers for the subroutine invocation. Each subroutine invocation
causes the dynamic allocation of its stack frame. Initially, a stack
frame contains undefined values except for the stack frame header and
the argument pointers (if any)•

Typically, the DYNM pseudo instruction is used in the following manner:

DYNM temporary-l(size-l) ,temporary-2(size-2)
DYNM argument-l(3) ,argument-2(3) ,argument-3(3) ,argument-4(3)
DYNM temporary-3(size-3) ,temporary-4(size-4)

The argument list pointers must be allocated 3 halfwords each, and must
be contiguous in the stack frame as indicated. Other temporaries can
precede or follow the argument list template in the stack frame. The
start or the argument list template in this case is argument-1, and the
number of arguments is 4.

The DYNM pseudo instruction provides the only way of allocating stack
frame storage in PMA. Using an BQU pseudo instruction to set a symbol
equivalent to, say, SB%+102 does not affect allocation of the stack
frame in any way.

Use of DYNM changes allocation of storage to the stack frame only
temporarily. The current assembly pointer is still either in procedure
or linkage text, so machine instructions and data generation directives
following DYNM are placed in either the procedure or the linkage area
rather than the stack frame. (You cannot specify initial values for
storage in the stack frame except by including prologue code in your
subroutine to perform the initialization at runtime.)

7-5 First Edition

ADVANCED PROGRAMER'S GUIDE, VCLtflE I: BIND AND EFFS
(

Linkage Information: Information for each subroutine entrypoint that \s*%
describes the entrypoint t o BIND i s called linkage information. I t s)
purpose i s t o t i e together the procedure text , linkage text , and stack
and parameter al location information for the entrypoint.

This information i s turned into an ECB (Entry Control Block) for the
entrypoint by BIND. When the EPF i s invoked, PRIM3S modifies the ECB
for each subroutine in the EPF so that the pointer t o the linkage text
in each ECB ident i f ies the actual location of the linkage text . For
t h i s reason, a PMA subroutine that has i t s ECB in the procee&ire text
behaves as an impure subroutine i f i t i s linked into an EPF via BIND.

Linkage information i s declared via the ECB pseudb instruction. Here
i s a sample use of the ECB pseudo instruction:

LINK (
ecb_J.abel ECB first_instructionJLabel,,first_arg,n_args

This ECB i s placed in the linkage text for the module. The label for
i t i s ectULabel and ident i f ies the actual target of procedure ca l l
(PCL) instructions to the entrypoint. The ENT pseudo instruction i s
used t o associate the exported (externally available) symbol name with
ecb_label:

ENT externaL_name,ecb_label

If externaiL_name and ecb_label are the same name, then only ENT
ecb_JLabel need be specified.

The label of the f i r s t instruction to be executed (an ARGT instruction
when the procedure has one or more arguments) i s identif ied v ia
f irst__instructionJLabel. The label of the start of the argument l i s t (
template i s f irst_arg and must refer to a stack-relative label
(declared via the DYNM pseudo instruction). The number of arguments i s
specified as n_args.

The ECB pseudo instruction can be used to specify other information not
described above. For example, between the two commas in the form
above, you could define the start of linkage text for the entrypoint.
I t defaults to the start of linkage text for the module, as indicated
via the LINK pseudb instruction. Another optional f i e ld , the stack
s i z e , defaults t o the amount of stack space exp l i c i t l y reserved via the
DYNM pseudo instruction. You can also specify the i n i t i a l value of the
keys register via ECB, although i t defaults (appropriately) to the
addressing mode of the module (V-mode or I-mode).

External Linkage^Information: A PMA module must often refer to symbols (
that are not defined within the scope of the module i t s e l f . These are
cal led external references.

. (

First Edition 7-6

C0DIN3 GUIDELINES FOR EPFS

A reference to a subroutine that is defined externally is a reference
to an external subroutine. For the most part, references to external
subroutines are handled automatically ty IMA via the CALL pseudo
instruction:

CALL subroutine

When IMA detects a CALL pseudo operation while assembling V-mode or
I-mode code, it:

• Identifies subroutine as an external reference, as if the pseudo
instruction EXT subroutine had been issued

• Places one IP (Indirect Pointer) in the linkage text that points
to the external subroutine at runtime, for use fcy all CALLs to
that subroutine in the current module, as if the following
instruction sequence had been present:

LINK (Switches to generating linkage text)
subroutine_JLp IP subroutine

PROC (Only if originally in procedure text)

Generates a procedure call instruction to invoke the subroutine,
identifying indirection through the IP it generated as the
target of the instruction:

PCL subroutine_ip, *

All of the above can be explicitly specified fcy the PMA programmer, but
use of the CALL pseudo instruction is recommended when calling external
subroutines. (To call a subroutine within the current module, use a
PCL to its ECB without specifying indirection.)

Another form of external reference includes references to program
common areas and other symbols. Here, PMA also automatically generates
IPs and implicitly forms indirect instructions that refer to the
external symbols. However, the symbols must be explicitly declared as
external as follows:

EXP symbol

7-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AMD EPFS
(

Caution

Do not use the XAC pseudo instruction or i t s equivalent EXT/DAC
pair in V-mode or I-mode IMA modules. PMA does not treat t h i s
usage as an error; however, neither BIND nor SEG support that
form of external link (DAC and XAC generate only a 16-bit
halfword l ink) , and PRIMDS does not support the conversion of
an imaginary 16-bit address to an actual 16-bit address.

The OOMM pseudo instruction i s particularly useful for building
representations of common areas. PMA automatically generates IPs for
references into common areas, including references into the midst of
common areas. In other words, PMA does not generate a s ingle IP t o the
beginning of a common area and then use offset addressing (via the XB
or X registers) to access items within the common area. Instead, PMA
generates one IP for each reference into a common area at a different
offset . This method produces more e f f ic ient code in terms of execution
time at the expense of the s ize of linkage text (as more than one IP
may be needed t o access each common area) • I t also allows PMA to avoid
making de facto use of the XB or X register, either or both of which
may be used by the programmer in neighboring instructions. However,
because PMA must convert instructions referencing common areas so that
they go indirect through IPs, the instructions in the source program
cannot specify indirection.

If you want to refer to items within a common area using of fse t
addressing rather than directly through an IP, you must use either the
XB or X register. To use the XB register, code the instruction:

EAXB common__area (Becomes commoiLarea_jLp, *)

Then, your program performs subsequent references to items within the
common area fcy referencing XB%+offset, where offset i s the o f f se t of
the item, in halfwords, from the beginning of oommon_area.

To use the X register , code the instruction:

LDX =offset

Subsequent references to the item that i s o f f se t halfwords from the
beginning of common_area are performed fcy referencing commoiuarea,X.
For example:

LDA commoruarea, X

First Edition 7-8

CODING GUIDELINES FOR EPFS

Because oommon_area i s an ex te rna l , PMA automatically t r a n s l a t e s t h i s
i n to :

LDA common_area_ip, *X

Therefore, you cannot perform ind i rec t ion through a pointer in a common
area without using ef fec t ive address ca lcula t ion and the XB r e g i s t e r .

Note

When using the XB or X register, remember that, as with all
other general-purpose registers, the FCL (also CALL)
instruction may destroy the register contents.

Designating the Main Entrypoint; If you are writing a IMA module that
is to contain the main entrypoint for a program EPF, you must designate
the main entrypoint of the module fcy specifying the symbol name for the
ECB in the operand field of the END pseudb instruction at the end of
the module. For example:

SEG
RLIT
SYML

SUBR COUNT, G0DN1LBCB

LINK
COUNTJSCB ECB COUNTJSTART,, COMMAND_J.INE, 2

DYNM O)MMAND^INE(3),SEVFiaTXjC0DE(3)

race
*

GOUNT_START EQU *
ARGT

END COUNT_ECB

As t h i s example i l l u s t r a t e s , you must specify the l abe l t h a t t ags the
ECB for the main entrypoint (COUNT_ECB), not the external name of the
subroutine (COUNT) or the s t a r t i n g address of the procedure code

^ (COUNIUSPART).

7-9 F i r s t Edi t ion

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

If you specify the main entrypoint in this fashion, you may still use (/
the module as a subroutine rather than a main program; in this case,
your specification of the main entrypoint is ignored.

If you fail to specify the main entrypoint as shown, linking the
assembled module as the first module in a program EPF produces an EPF
that, when run, might produce an error message such as:

Error: condition WILLEGAI^_SEGN^$,, raised at 41(3)/122722.
(Referencing l(3)/0).
ER1

If you do not have access to the source code of the module, or if you
wish to use a "quick fix", relink the module and use the MAIN
subcommand of BIND to specify the entrypoint of the module that is the
main entrypoint of the program EPF. You may do this particularly
quickly by using the following command sequence:

BIND
LOAD failing-program.PUN
MAIN main-entrypoint-name
FILE working-program. TON

Restrictions on Writing PMA Modules for EPF Execution

When writing a module in PMA for execution within an EPF, several
restrictions must be observed:

• Each subroutine in the module must execute in the V-mode or
I-mode environment.

• If the module has impure procedure text, i t must be declared as
an impure module

• If the module has pure procedure text, i t should be declared as
a pure module

• Subroutines within the module must not use explicit addressing
to externals unless their addresses are explicitly set during
the BIND session

• Indirect Pointers (IPs) used in the module must never be
modified by the module, because they are not necessarily
reinitialized when the EPF i s reinvoked

This section discusses these restrictions.

First Edition 7-10

C0DIN3 GUIDELINES FOR EPPS

U. PMA Subroutines Must Execute in V-mode or I-mode Environment; A PMA
{* subroutine intended for execution within EPFs must be assembled in the

V-mode or I-mode environment, as implied by the requirements that PMA
^modules used for EPFs must begin with SEG or SEGR.

Under most circumstances, a PMA module must execute entirely in V-mode
or I-mode. Occasionally, i t may enter R-mode or S-mode to execute a
limited set of instructions. For example, i t may wish to execute a PIO
instruction to read or test for a character from the user terminal.
However, the PMA subroutine must reenter V-mode or I-mode before
returning to the calling procedure.

Impure PMA Module Restrictions; If a PMA module i s impure, the SEG or
SEGR pseudo instruction at the top of the module must read SEG IMPORE
or SEGR IMPORE.

An impure PMA module i s characterized by an inability to be executed
with the pure procedure (PROC) portion of the subroutine protected
against modification ty the subroutine. Instead, BIND places such a
module in impure procedure (IMPORE) segnents of an EPF. An IMPORE
segnent i s similar to a PROC segnent in that i t contains procedure code
and therefore must start at offset 0 in an actual segnent, whereas DATA
segments are relocatable to anywhere inside a segnent. However, an
IMPORE segnent i s not shared between users and i s not protected against
writing. Except in the case of a process-class library EPP, IMPORE
segments are treated like DATA segnents by PRIMDS, in that they are
reinitialized each time the EPF i s invoked.

Any PMA module that explicitly stores into the procedure text i s
inherently impure. Such modules are said to employ self-modifying
code. This i s widely regarded as poor programming practice. Moreover,
some Prime systems employ preprocessors or a pipeline architecture,
which may not behave as expected under such circumstances. On Prime
systems, therefore, self-modifying code may not work or may result in
nontransportable programs.

However, a PMA module can also implicitly modify procedure text, for
example, by placing the ECB for the module in the procedure text and
linking the module into an EPF. When such a module i s part of an EPF,
the actual placement of the linkage text i s determined when the program
i s run, not when i t i s linked by BIND. (When loading with SEG and
producing SEG runf i l e s , the linkage text i s placed during the loading
of the program by SEG.)

Therefore, when running as an EPF, PRIMDS must set the linkage base
pointers for the ECB of each procedure in the EPF. If an ECB i s in the
procedure text, which i s normally protected against writing, PRIMDS
would encounter an access violation error i f i t tried to set the
linkage base pointer for that ECB; therefore, PRIMDS does not attempt
to modify the ECB. It i s because the ECB requires modification at
runtime that a module with an ECB in the procedure text i s considered
impure.

7-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS
(

If BIND encounters an ECB in the procedure text, and the module is not (,
declared as an impure module, BIND issues a warning message. If the
resulting EPF is executed, it may produce an access violation error
when the offending module is invoked, because the imaginary address has
not been translated into an actual address.

Similarly, placing IPs (Indirect Pointers) in the procedure text
results in an impure module when that module is linked using BIND,
unless all such references identify external symbols that are
explicitly located during program binding using the SYMBOL command of
BIND.

Modification of procedure text can occur explicitly or implicitly. An
explicit modification is performed ty the subroutine code (or possibly
code outside the subroutine). When the subroutine is run within an
EPF, ijnplicit modifications occur when subroutine linkage data are
placed in the procedure text. This linkage information must be
dynamically adjusted by the EPF mechanism when the subroutine is
executed.

A JOT (Jump and STore) instruction that references an internal
subroutine also produces impure code, because JOT stores the offset
portion of the return address in the halfword that is the target of the
instruction and then begins execution at the subsequent halfword. if
the target of the JOT instruction is in procedure code, rather than
linkage, common, or stack frame storage, then the procedure code is
impure. Instead, use the JSXB, JSX, or JSY instructions, and modify
the target subroutine accordingly.

The RLIT and FIN pseudo instructions are often used to specify that
literals are to be placed in the procedure text, rather than the
linkage text. If literals are properly used, this does not result in
an impure PMA module. However, using RLrr or FIN for literals that are
to be stored into results in an impure module. (Storing into literals
is considered extremely bad programming practice.) For example, the
following literal reference is a pure reference independent of the use
of RLIT or FIN:

LDA =5

However, the following l iteral reference requires that the RLIT or FIN
pseudo instruction not be used if the procedure i s to remain pure:

STA=10

This reference also has the dangerous side effect of causing references
to the literal value of 10 to reference a different value for the ,
entire subroutine or for portions of that subroutine. (<

(

First Edition 7-12

CODING GUIDELINES EOR EPFS

Pure PMA Modules; If a PMA module is pure, that is, if it does not
have any of the characteristics of an impure module as described above,
then the SEG or SEGR pseudo instruction at the top of the module should
read SEG PORE or SEGR PORE. If PURE is not specified, the default is
PURE anyway.

However, explicitly including the PORE keyword can be a convenient
signal to other programmers that the module has been checked for
purity. If this convention is used, then any PMA module without a PORE
or IMPORE keyword following the SEG or SEGR pseudo instruction should
be checked for purity before being linked into an EPF.

No Explicit Addressing of Dynamically Placed Externals: If a PMA
module attempts to use an explicit address to an external entity, and
the external entity is not placed via the SYMBOL command during the
BIND session, the PMA module may not execute properly.

Such an attempt might appear as follows:

LDA THEVALUE, *

THEVALUE OCT 4001
OCT 174000

To remedy this situation, either use the SYMBOL command to place the
entity being addressed through THEVALUE at 4000/174000, or fix THEVALUE
to appear as follows:

EXT ENTITY
THEVALUE IP ENTITY

Do Not Store Into IPs or ECBs: If your program declares Indirect
Pointers (IPs) or Entry Control Blocks (ECBs), it should never modify
them during, execution. For example, consider the following subroutine:

SEG
RL3T
SYML

*

ENT TESTSUBR
*

LINK
TESTSUBR ECB START

PROC

START CALL 1N0U

7-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

*

*

*

STRINGl
STRING2
*

THE_IP
*

AP
AP

EAL
STL

PRTN

BCI
BCI

LINK
IP

END

THE_IP, *S
=16,SL

STRING2
THE_IP

'THIS IS STRING l f

'TOIS IS STRING 2*

STRINGl

TESTSUBR

(

(

This program uses THELIP t o point t o one of two s t r i n g s . I t speci f ies
t h a t , i n i t i a l l y , TflE_IP i s t o point t o STRINGl, and t h a t for a l l
subsequent c a l l s , THELIP i s t o point t o STRING2. The in ten t ion here i s
for the subroutine t o behave di f ferent ly during i t s f i r s t invocation by
a program than i t behaves during subsequent invocations fcy the program.

However, once THE_IP i s modified, i t i s not r e i n i t i a l i z e d fcy PRIMDS
during repeated invocations of the program unless the program has been
removed from memory (or i f the k$ in i t_a l l key i s supplied t o EPF$INIT / ^ ^
by a user program as described i n Volume I I I of t h i s s e r i e s) . \;^\

For example, i f you c a l l t h i s subroutine from a program t h a t simply
c a l l s TESTSUBR once and then e x i t s , then the program does not produce
iden t i ca l r e s u l t s when invoked several times i n a row, a s shown in the
following sample sess ion:

OK, RESUME TESTPROG
THIS IS STRING 1 (
OK, RESUME TESTPROG
THIS IS STRING 2
OK, RESUME TESTPROG
THIS ES STRING 2
OK, REMOVE_EPF TESTPROG
OK, RESUME TESTPROG
THIS IS STRING 1
OK, RESUME TESTPROG
THIS IS STRING 2
OK,

The REMOVEJEPF command, used midway through tiiis session, removed the
EPF from memory. This forced the complete r e i n i t i a l i z a t i o n of the EPF
a t the next RESUME command, and thus res tored THE_IP t o i t s i n i t i a l (
state.

First Edition 7-14

CODING GDIDELINES FOR EPFS

In any s i tuation where you wish to modify IPs or ECBs, s p l i t them into:

• The desired init ial value (IP or ECB) that i s not modified by
the program

• A block of linkage data (using the BSS pseudo instruction) that
i s to contain the actual value that i s used and modified (BSS 2
for IP, BSS '20 for ECB) during program execution

Then, create another linkage-resident variable cal led FIRSTLINVOCATBDN
and declared as follows:

FIRST_INVOCAT]DN OCT 1

Having done t h i s , the f i r s t thing your subroutine should do i s examine
FIRST_INVOCAT:iDN. If nonzero, i t should i n i t i a l i z e the block of
linkage data described above to the desired i n i t i a l value (IP or ECB).

Then, before your subroutine returns, i t should examine
FIRST__INVOCAT3DN again, and, i f nonzero, i t should update the block of
linkage data as desired and then set FIRST_IN70CAT3DN t o 0.

Because FIRSILINVOCATBDN i s an in i t i a l i z ed datum, i t i s re in i t ia l i zed
by PRIMDS during every program invocation.

Here i s the TESTSOBR subroutine, shown above, modified according t o
these recommendations:

*

*

TESTSUBR

*

START

*

•

GO

*

SEG
RLIT
SYML

ENT

LINK
ECB
PROC

LEA
BEQ

EAL
STL

CALL
AP
AP

LEA
BEQ

TESTSUBR

START

FIRSTLINVOCATIDN
GO

1HE_IP_INITIAL,*
THE_IP

TN0CJ
1HE_IP, *S
=16,SL

FIRS1L.INVOCAT3DN
RETURN

7-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPPS

*

*

RETURN
*

STRING1
STRING2
*

EAL
STL

CRA
STA

PRTN

BC1
BCI

SIRING2
THELIP

FIRST_INVCCAT]DN

'THIS IS STRING 1 '
'THIS IS STRING 2*

LINK
THELIP_INITIAIi IP STRINGl
THELIP BSS 2
FIRST_INVOCAT3DN OCT 1
*

END TESTSUBR

Now, invoking the TESTPROG progrcm linked with tiie new version of
TESTSUBR shown above produces the correct output during subsequent
invocations:

OK, RESUME TESTPROG
THIS IS STRING 1 (
OK, RESUME TESTPROG ^ ^
THIS IS STRING 1 '
OK, RESUME TESTPROG
THIS IS STRING 1
OK,

First Edition 7-16

JFS

8
Shared Data

The architecture of Prime 50-Series systems allows programs to have
access to memory that i s shared by a l l processes on a system.
Cooperating programs may use this capability to communicate between
user processes.

In addition, programs may wish to communicate with each other within
the context of a single process, by accessing a predefined common area
in nonshared (per-user) memory.

The distinction here i s between data that i s shared for an entire
system and data that i s shared within a user process. Aside from the
choice between system-wide and process-wide shared data, the mechanisms
used in employing both kinds of shared data access are the same;
exceptions are noted in this chapter.

This chapter describes:

• How to define a shared common area in either shared or nonshared
memory

• How to update information in a shared common area atcmically

8-1 First Edition

(
ADVANCED PROGRAMMER'S GUIDE, VOiUME I: BIND AND EPFS

HCW TO DEFINE A SHARED COMMON AREA

There are two general ways to define a common area that is shared
between two or more programs, either within the context of one process
(when nonshared memory is used) or of one system (when shared memory is
used):

• Use the SYMBOL subcommand of BIND to specify the actual address
of an external common area

• Place subroutines that wish to communicate with each other in a
process-class library EPF

This section describes both approaches.

Using the SYMBOL Subcommand of BIND

The SYMBOL subcommand of BIND is used to specify the actual address of
an external common area in memory. This address may be either in
shared memory or in nonshared static memory.

Each program or library that wishes to use the shared area must use the
SYMBOL subcommand during the linking of that program. In addition,
they must all specify the same actual address of the shared data area.
The name of the shared data area may differ from program to program;
however, it is good practice to use the same name throughout.

Because the location of the shared common area is placed during the
linking of a program, there are no special requirements on the
compiling of the program. However, there are coding requirements that
are described in the section later in this chapter entitled HCW TO
UPDATE SHARED INFORMATION ATOMICALLY.

Before you can run a program that accesses a shared data area, you (
must:

1. Determine the address of the shared data area.

2. Ensure that the shared data is initialized once during each
system ooldstart (for data in shared memory) or once for each
user login (for data in nonshared memory).

3. Specify the appropriate SYMBOL subcommand while linking your
program or library.

Determining the Address of the Shared Data Area: Because memory
accessed via the SYMBOL subcommand of BIND is not managed ty PRIMDS,
you must determine a location for your shared data area that does not ,
conflict with other programs or libraries. {J"\

First Edition 8-2

SHARED DATA

u ^ For shared (system-wide) memory, you use shared segments. Shared
(segment numbers range from '2000 through '2577 at Rev. 19 .4 . However,

you must consult with your System Administrator before deciding what
portions of shared system-wide memory to use. He or she w i l l use the
System Administrator's Guide, which contains a l i s t of shared segment
usage by Prime products, along with information on shared segnent usage
at your insta l lat ion , to determine where your shared data can be
placed.

For nonshared (per-user) memory, you use s t a t i c segments. Stat ic
segment numbers range from '4000 up to the f i r s t dynamic segnent number
for each particular user. You may, for example, use memory in segment
'4001. However, bear in mind that static-mode programs use segment
'4000 and may use s t a t i c segnents beyond segnent '4000. In addition,
other users may be building programs which, l ike yours, use s t a t i c
segments t o store shared per-user data; their choice of placement of
the data might conflict with your choice. Again, i t i s best to consult
your System Administrator on the matter. He or she may decide to keep
a registry of static per-user segnent allocation at your installation.

Ensuring That the Data Is Initialized; Before any program uses the
shared data, Ehe data must be initialized, either by a program that
uses the data or by a special initialization program. The execution of
a program, whether an EPF or a static-mode program, does not
automatically cause common data placed via a SYMBOL subcommand to be
initialized. This i s because BIND cannot statically init ial ize a
static segnent, nor does HtlMDS perform any static segment
initialization while preparing to execute an EPF.

For shared (system--wide) memory, this initialization must be performed
at the supervisor terminal; typically, i t i s performed at system
ooldstart. The following sample command sequence may be entered
interactively at the supervisor terminal or placed in the system
startup f i l e , ERIMDS.COMI (or QJRRD):

OIRIRI 1 /* Allow SHARE commands.
SHARE 2030 700 /* Share segnent 2030 for read and write access.
RESUME SYSTEMMNnLMXHlCG / * Initialize segnent 2030.
OIRIRI 0 / * Disallow SHARE commands.

Alternatively, if the initialization can be placed in a static-mode
memory image, such as one generated via the SHARE subcommand of SEG,
you can use a command sequence such as:

OIRIRI 1 /* Allow SHARE commands.
SHARE SYSTEM>MYIRCG2030 2030 700 /* Share segment 2030 for read

/* and write access, and load a staticMtode memory image into
/ * i t .

OERIRI 0 /* Disallow SHARE commands.

8-3 First Edition

ADVANCED EROGRAMMER'S GUIDE, VOLUME I: BIND AND EPPS
(

In both cases, you must build either the in i t i a l i za t ion program or the (
in i t i a l i za t ion static-mode shared image.

Note

If you SHARE a new shared segnent without specifying a
static-mode memory image to be placed in i t , the data in the
segment i s in i t ia l i zed to a l l zeroes. You may therefore
actually consider not in i t ia l i z ing the segment data at system
coldstart, and choose instead t o have your program i n i t i a l i z e
the data area i f a special portion of i t consists of zeroes
(indicating that the data has not ye t been i n i t i a l i z e d) . If

you do th i s , read the explanation below of how to perform
initialization in this fashion, because this method i s often
used for nonshared (per-user) memory. /

For nonshared (per-user) memory, the safest approach to initializing
your data area i s to ask a l l users who are going to use your program or
library to modify their LOGIN.CHJ or LOGIN.CDMI f i l e to include a
command such as:

RESUME IRC3GLPIR>INnUMyiR0G / * Initialize some static memory.

t
You must build the INmjMYIRCG program and place it in the appropriate
directory (IRCGLPIR in the example).

This method is the safest because it reduces the chances that your
program will be run before the data is initialized.

An alternate method is for your program to determine, when it begins
running, whether the data has been initialized, ty testing a portion of
the data area to see if it contains a certain data pattern. If it does (
not, your program can initialize it at that point in time, and set the
data pattern to indicate that initialization has taken place.

ftiis kind of dynamic initialization has the advantage of being easier
to set up, but it has the disadvantage of possibly not recognizing a
situation where the correct data pattern is in place but the entire
data area has not, in fact, been initialized. To reduce this risk,
have your initialization logic write the pattern only after the rest of
the data area has been initialized, and use plenty of unusual values in
the data pattern.

Specifying the Aroropriate SYMBOL Subcommand: Specify the appropriate
SXMBCL subcommand as follows:

(
SYMBOL name definition [size]

(

First Edition 8-4

j0$\

SHARED DATA

Herer name i s the external name of the common area, definit ion i s the
location of the shared data area in the form segno/offset, and size,
which i s optional, specifies the size of the shared data area in 16-bit
halfirords (in decimal, not in octal). For example, to specify that the
external common area named MESSAGES i s to be placed at address 2030/0
and that i t i s 200 decimal halfwords in length, issue the following
subcommand while linking the program via BIND:

SYMBOL MESSAGES 2030/0 200

Using a Process-class Library EPF

If you want to place the shared data area in nonshared (per-user)
memory, i t might be best to place a l l subroutines that use the shared
data area in a single process-class library EPF. The data area may
then be either a common area or the linkage for a single procedure that
contains one or more entrypoints. This approach has the following
advantages over using the SYMBOL subcommand:

• BIND and FRIM3S ensure that the data area i s automatically
initialized each time the process-class library EPF i s f irst
invoked by a user.

• You do not need t o check with your System Administrator to
determine where, in s t a t i c memory, to place the shared data
area, because BIND and PRIMDS determine the location of the area
when the process-class library EPF i s f i r s t invoked by a user.

• You do not need t o specify any special BIND subcommand aside
from the commands t o declare the library to be process-class.

• Additional memory may be allocated for the shared data area by
using ALLOCATE statements in EL1/G.

• Data can be initialized by using STATIC INITIAL (. . .) attributes
in PLl/G or DATA / . . . / statements in FORTRAN.

However, you must ensure that the subroutines you place in the
process-class library EPF meet the requirements for a process-class
library EPF, as outlined in Chapter 6.

A small but illustrative example of this form of shared data access i s
the GET_USERNAME subroutine shown in Chapter 6 and reproduced here:

get_username: proc returns(char(32));

del 1 timdat__info static,
2 date char (6),
2 time fixed bin(15),
2 ticks fixed bin (15),

8-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS
(

2 meters (4) fixed bin(15), f _
2 tps fixed bin(15), v ^
2 user_number fixed bin(15),
2 user_name char (32);

del have__info b i t (l) s t a t i c in i tCO'b);

del timdat entry(l ,2 char(6) f2 fixed bin(15) f2 fixed bin(15),
2 (4) fixed bin(15),2 fixed bin(15),2 fixed bin(15)r
2 char (32),fixed bin(15));

i f "'have-info
then do;

ca l l timdat (timdat_info, 28);
have__info='l,b;
end;

return (user_name);
end;

Because the task of th i s subroutine i s simply to return the username of
the invoking user, i t i s written to save time after the f i r s t
invocation by cal l ing the TIMDAT subroutine, which i s an internal
PRIMOS entrypoint, only once. After the f i r s t c a l l , subsequent
invocations result simply in the returning of the username acquired ,
during the f i r s t invocation. vy^\

If GET_USERNAME i s placed in a process-class l ibrary EPP, then several
programs that c a l l i t may be run, and yet i t w i l l invoke TIMDAT only
the f i r s t time i t i s run. PRIMOS keeps the linkage data for a
process-class library EPF active between program invocations, as
described in Chapter 6.

In a sense, th i s subroutine "communicates° between program invocations
within a single user process. One program may have t o end up cal l ing /
TIMDAT via GETJCJSERNAME to acquire the username of the user, but the
next program run by that user reuses the same username. This i s a very
simple form of interprogram communication.

This simple use of process-class library EPP linkage i s applicable to
information that i s process-wide, rather than program-wide. Other
examples of such information include:

• User number

• Terminal type — the user may have to be asked to enter the
terminal type the first time, but after that, i t could be made
available to subsequent programs and libraries via a
process-class library EPF subroutine

• User's origin directory

First Edition 8-6

/

SHARED DATA

• User's erase and k i l l characters (useful if the process-class r library EPF also handles the collection of command l ines; the

internal PRIMDS subroutine ERKL$$ i s already quite fast)
More complex uses of process-class library EPF linkage (or common) data
areas might include:

• Keeping track of virtual circuits a user has open to other
systems for remote login or other purposes, allowing a user to
leave a networking program and later reenter i t while keeping
his or her connections intact

• Keeping track of how many times a user invoked one or more
particular applications and possibly even keeping track of
functions invoked within each application — a log f i l e unit
number might be a candidate for a shared datum

However, except for the very simplest uses of shared per-user data
areas, you must be careful to design subroutines so that they either
prevent interruption (such as by inhibiting quits or establishing
on-units) or are robust enough to withstand interruption at any point
followed by a new invocation of the same or similar subroutines.
Remember, a subsequent invocation of an executing subroutine in a
process-class library EPF, while recursive in nature, never causes tiie
allocation or initialization of linkage data; the existing linkage
data i s used. Modifications made by the second invocation of the
subroutine can affect the ability of the first invocation of the
subroutine to complete correctly when i t s execution i s resumed. See
the next section for information on how to update shared information in
a manner that protects against multiple concurrent updates.

HOW TO UPDATE SHARED 3MORMATIDN ATOMICALLY

Whether in system-wide shared memory or in per-user nonshared memory, a
data area must be protected against the poss ib i l i ty of multiple
concurrent updates i f :

• Updates can be performed by two processes — only for
system-^wide shared memory

• Updates can be performed by either two or more separate
subroutines or two separate invocations of a single subroutine.
This occurs when one of the subroutines can be invoked following
an interruption of one of the subroutines (such as via a user
typing COMIRCL-P or the asynchronous invocation of an on-unit as
a result of a condition such as PH_J0GO$ or LOGOUT$ being
signaled)

Incorrect or nonexistent use of interlocking fac i l i t i es for the
updating of shared data areas i s very difficult to detect; similarly,
correct use i s difficult to prove. Typically, incorrect or nonexistent
use of such fac i l i t i es results in perhaps a serious program error once

8-7 First Edition

ADVANCED PROGRAMtER'S GUIDE, VO.UKE I : BIND AND EFFS
(

in a great while; because the serious error is not easily C*^.
reproducible, it is often written off as a "glitch". To build the most "^)
robust product, you should carefully analyze portions of your product
in which interlocking facilities might be needed to determine just how
to use them.

You should study how your subroutines use either the linkage area of a
process-class library EPF or, more obviously, shared system-wide memory
to see if interrupt inhibition or atonic updating are called for. Keep
in mind that statements such as

rFEMs=rrEMs+i

are interruptible between the reading of the current value of ITEMS and
the storing of the incremented value. An interruption at that point,
followed by reinvocation of the same subroutine, might result in two
invocations of the subroutine, causing the ITEMS value to be
incremented only once. If ITEMS is used as a unique identifier by
subroutine invocations, the results might be disastrous; yet this
situation might not ever occur even during exhaustive testing, and
would probably not be reproducible. On the other hand, if the
increment of ITEMS is tested against some other static data in an
atomic fashion, perhaps the failure of the multiple concurrent update
will not have a bad effect on the program.

For example, see the final version of the AVERAGE subroutine in Chapter
6. Note that while it makes reasonably heavy use of linkage (common)
data, only certain updates to the common areas are protected by calling
a special subroutine. Other updates are interruptable because they are
protected by the atomic updates performed, ultimately, by the STAC
instruction in the G0NQ_STORE subroutine.

Following is a listing of the COOTLSTORE subroutine, written in PMA,
plus a version of the subroutine named IXNG_G0ND_JST0RE that deals with
FIXED BBJ(31) (FULL INT, or INTBGER*4) integers. After that, a listing
of a special-purpose EMA subroutine that performs a typical use of the
STAC instruction, named INCREMENT, is provided.

Note

These three subroutines, O0ND_STORE, LQN5J0ONDJSTORE, and
INCREMENT, are provided by Prime only in this document, not on
the master disk. If you wish to use them, you must key them
into your system. They are all PMA subroutines.

First Edition 8-8

SHARED DATA

The C0ND.J5TORE. PMA Subroutine

The CCND_jSTORE.PMA subroutine i s c a l l e d with three halfword i n t e g e r s ,
and returns as i t s function value a halfirord integer. In ELl/G, i t s
cal l ing sequence i s :

del ooncLstore entry (fixed bin(15),fixed bin(15) f fixed bin(15))
returns (fixed bin (15));

concLstore_ok=KX)ncLstore (destination, new_valuer olcLyalue);

If concLstore_ok i s 1 , then the value of destination has been
successfully changed from oldLvalue to new_value. Otherwise,
concL_store__ok i s 0, and no change to destination has taken place.

SEE HIRE
RLPP
SYML

SUBR COND_STORE, BCB

LINK
EXB BCB OONELSTORE,, WHERE, 3

EROC
*

COND_STORE EQU *
AR6T
LDA OLD,*
TPB
LDA NEW,*
STAC WHERE,*
BCEQ OR
CRA
FRTN

*

OK LT

*
HON

DYm WHERE(3) ,NEW(3) ,OLD(3)

END

8-9 First Edition

ADVANCED HlOGRAMtER'S GUIDE, VCLUtG I : BIND AND EEFS

The IXK&jOQND_J5TORE.PMA Subrout ine f

The L0ICj00NDJ3TX>RE.FMA subroutine i s ca l led with th ree fullword
in t ege r s , and re tu rns as i t s function value a halfirord in t ege r , m
HJ./G, i t s ca l l ing sequence i s :

de l long_cond_store entry (fixed bin (31), f ixed bin (31),
fixed bin(31)) returns(f ixed b in (15)) ;

concLstor e_ok«long_condLstore (dest inat ion, new_value, oldLyalue);

I f con6Lstore__ok i s 1 , then the value of des t ina t ion has been
successfully changed from olcLvalue t o newjvalue. Otherwise,
concLstorojok i s 0, and no change t o des t ina t ion has taken p lace .

SEG HJRE
FLIT
SYML

SUBR IOSPGL00ND_5riX)RE,BCB
*

LINK
ECB BCB LGNGLG0ND_STORE,,WHERE,3

EROC

I/»KL.GOND_STORE EQU *
ARGT
LDL OLD,*
ILE
LDL NEW,*
STLC WHERE,*
BCEQ OK
CRA
ERTN

*

OK LT
ERTN

DYNM WHERE(3) ,NEW(3) ,OLD(3)

END

The INCREMENT. PMA Subrout ine

The INCREMENT. PMA subrou t ine increments t h e v a l u e of a v a r i a b l e
atomically and re tu rns the new value a s i t s function va lue . I t dea l s
e n t i r e l y in halfword in tegers (FIXED BIN (15), INTEGER*2, HALF INT).
Note t ha t by the time the subroutine ac tua l ly r e tu rns , the returned
value may differ from the l a t e s t value of the va r i ab l e due t o an update

F i r s t Edition 8-10

SHARED DATA

by another procedure or process; the purpose of the returned value is
to provide the caller with a value guaranteed to be unique if all
references to the variable by all procedures and processes are done
through the INCREMENT subroutine.

SEE KJRE
RLIT
SYML

SUBR INCREMENT, ECB
*

LINK
BCB EJCB INCREMENT,, VARIABLE, 1

PROC
*

INCREMENT EQU *
ARGT

TRY^AGAIN LDA VARIABLE,*
TAB
A1A
STAC VARIABLE,*
BCNE TRY_-AGAIN

* It is important to leave A-reg as is after the STAC
* instruction succeeds; do not LDA VARIABLE, * or it may
* be different from what we incremented it to just now I
*

FRTN New value i n A-reg

DYNM VARIABLE(3)
*

END

8-11 First Edition

9
Maps and Addresses

Because EPFs are dynamically placed in available memory at runtime,
^ maps of EPFs produced by BIND do not, for the most part, contain actual
^ memory addresses. Instead, they contain imaginary addresses, as

described in Chapter 1.

Once an EPF has been mapped to memory, the location of i t s procedure
code i s determined; once that EPF has had i t s linkage data allocated,
the location of a l l data in the EPF i s determined. To display
information on where code and data for an active or mapped EPF have
been placed, use the following format of the LEST_EPF command:

LIST_EPF EPF-name -SEGMENTS

You may then correlate the displayed output from the L3STJEPF command
with the BIND map produced for that EPF to determine the actual
addresses of subroutines, common areas, and so on, in that particular
invocation of the EPF.

This chapter explains imaginary versus actual addresses. Then, this
chapter describes how to use LISTLJJPF output, LISTLSEGMENT output, BIND
maps, VPSD, and DUMP_JKEflCK output to examine in-memory EPFs. Finally,
the chapter provides a short section on expanded l is t ings .

9-1 First Edition

(
ADVANCED IROGRAMMER'S GUIDE, VCLUME I: BIND AND EPFS

IMAGINARY VS. ACTUAL ADDRESSES

To understand how to correlate BIND maps with the displayed output of
PRIM3S commands such as LISTLEPF, DUMPJSTACK, and VBSD, you must f i r s t
understand imaginary addresses and how they differ from actual
addresses.

An imaginary address i s a temporary representation of a memory address
generated by BIND. An imaginary address ident i f ies locations within an
EPF for later correlation with actual addresses determined by ERIMDS
when an EPP i s mapped, i t s linkage allocated, and i t s linkage
in i t ia l i zed . An actual address i s also known, from a system
architecture point of view, as a virtual memory address.

Both imaginary addresses and actual addresses have the form:

segno/offset

So that imaginary addresses and actual addresses can be distinguished
at a glance, imaginary addresses have signed segnent numbers, while
actual addresses have unsigned segment numbers. Here are some sample
addresses:

Imaginary Addresses Actual Addresses

-0002/10472 4376/15433
•K)000/77160 4363/126021

-0004/1672 4232/1000
•KJ006/1000 4337/100123

(The addresses l i s t e d above do not necessarily have any correlations
with each other.)

Sometimes, actual addresses are shown with ring numbers, as in
4376(3)/15433 or 4337(0)A00123. These ring numbers have no e f fect on
the execution or behavior of your program; therefore, you may ignore
them.

Also, different portions of IRIMDS and BIND display both types of
address with or without leading zeroes. Therefore, imaginary address
-0002/10472 may also be displayed as -2/10472 or as -000^/010472; a l l
three displays are equivalent.

Positive or Negative Segnent Numbers

Imaginary addresses have signed segnent numbers; either a + or - (**%
always precedes the segnent number of an imaginary number.)

First Edition 9-2

MAPS AND ADDRESSES

• A positive (+) sign indicates a segnent used to hold pure
procedure code.

• A negative (-) sign indicates a segnent used to hold linkage or
common data, or impure procedure code.

In addition, BIND maps indicate the type of information stored in each
segnent. In BIND maps, pure procedure segments are labeled PROC; data
segments containing linkage or common data are labeled DATA; and
impure procedure code segnents are labeled IMPURE. PROC segnent
numbers always start with a positive (+) sign; DATA and IMRJRE segnent
numbers always start with a negative (-) sign.

Thus, imaginary segment number +0 is a PROC (pure procedure) segment,
whereas imaginary segment number -2 is an impure segment that may be
either a DATA or an IMPURE segment.

USING THE LISTLEEF COMMAND

The LIST_EPF command is the crucial command to use when working with
EPFs and memory addresses. It displays the correspondence between
imaginary segment numbers and actual memory addresses.

For example, here is the display of a LIST^EPF -SEGMENTS command issued
after the LD, CDFY, and DELETE commands have been used:

OK, LISTLEPF -SEGMENTS

1 Process-Class Library EPF.

(active) <SYSDSK>LlBRARIES*>SYSTEMJiIBRARY.HJN
2 procedure segnents: +0:4234 +2:4235
2 linkage areas: -2:4376(0)/0 -4:4377(3)/730

3 Program EPFs.

(not active) <SYSDSK>CMDNC0>COPY.HJN
1 procedure segment: +0:4237
2 linkage areas: -2:4375 (0)/0 -4:4377(3)/44744

(not active) <SYSDSK>CMDNCO>DELETE.HJN
1 procedure segment: +0:4240
2 linkage areas: -2:4374(0)/0 -4:4377(3)/52770

(not active) <SYSDSK>CMDNC0>LD.HJN
1 procedure segnent: +0:4236
1 linkage area: -2:4377(3)/36100

OK,

9-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS /

The correspondence between imaginary PROC segnent numbers and actual y
addresses i s displayed as:

+imaginary_segno: actuaXjsegno

The correspondence between imaginary DATA and IMPURE segnent numbers
and actual addresses i s displayed as:

-imaginary.segnozactuaLsegno/actuaLjoffset

Notice how each FROC segnent (with RX access) has only one EPF l is ted
for i t in the LIST_SEGMENT display; whereas segnent 4377, a DATA /
segment, has four EPFs l isted for i t . This i s because an imaginary ^
PROC or IMPURE segnent must be the only resident of an actual segnent,
even i f i t does not use a l l of i t ; imaginary segnents containing
executable procedure code must be placed at offset 0 of an actual
segnent because executable procedure code i s not relocatable within a
segment. However, imaginary DATA segnents can share actual segnents
with other imaginary DATA segments, because they can be easily
relocated within a segnent.

Therefore, in the output from the LIST_EPF -SEGMENTS command shown /
earlier in this section, the actual addresses for imaginary PROC \^\
segments are shown without offset portions, as in:

+0:4240 (a PROC segnent)

(

The actual addresses for imaginary DATA segnents are shown with nonzero
offset portions, as in:

-4:4377 (3)/52770 (a DATA segnent)

For EPFs containing imaginary IMPURE segnents, LISTJPF -SEGMENTS
displays the actual addresses with zero offset portions, as in:

-2:4374(0)/0 (an IMPURE segnent)

Note

The LIST_JIPF -SEGMENTS command displays information on only the
most recent invocation of an EPF. Previous active invocations, ,
applicable for program EPFs and program-class library EPFs, are (
not displayed in the l i s t of linkage segnents.

(

First Edition 9-4

MAPS AND ADDRESSES

USING TOE LISOLSEGMENT COMMAND

To i l l u s t r a t e the ac tua l mapping of segments for the EPFs displayed in
the sample LIST_EPF display above, here i s the display from a
LIST__SBGMENT -NAME command issued j u s t a f t e r tiie same LEHLEPF
-SEGMENTS command shown above:

1 Pr iva te s t a t i c segnent.
segnent access

4000 RWX

9 Pr ivate dynamic segments,
segment access epf

4234
4235
4236
4237
4240
4374
4375
4376
4377

RX
PX
RX
RX
RX
RWX
RWX
RWX
RWX

<SYSDSK>LIBRARIES*>SYSTEM_JiIBRARy. RUN
<SYSDSK>LIBRARIES*>SYSTEM_JjIBRARY.RUN
<SYSDSKXMDNC0>LD.RON
<sYSDSKX3Earcoxx>py. PUN
<SYSDSK>CMDNCO>DELETE.RUN
<S YSDSK>CMDNCO>DEL,ETE. RON
<SYSDSK>CMDNC0>COPY.RUN
<SYSDSK>L]BRARIES*>SYSTEMJ^IBRARY. RUN
<SYSDSK>CMDNC0>COPY. RON
<SYSDSK>CMDNCO>DELETE. RUN
<SYSDSK>CMDNCO>LD.RUN
<SYSDSK>L3BRARIES *>SYSTENUL1BRARY. RUN

OKf

The segments with RX access are PROC segments — the R indicates that
they may be read, while the absence of the W indicates that they cannot
be written. The segnents with access RWX can be both read and written;
they are either DATA or IMPURE segnents. As explained in Chapter 1,
PRIMDS automatically shares PROC segments between users using the same
EPF.

USING THE BIND MAP

The map produced by a MAP subcommand while in BIND shows the
relationship of locations internal to an EPF to the beginning of two or
more imaginary segments that are used by that EPF. Each EPF has at
least two segments: a PROC segnent and a DATA segnent. larger EPFs
may use more than one PROC or DATA segment each, and some EPFs have
IMPURE segments (which are like PROC segnents except they are modified
during execution and hence cannot be shared or protected against
modification).

(The BIND map primarily contains imaginary addresses. The exceptions
occur when the SYMBOL subcommand is used to specify an actual address

9-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS
(

for an external symbol (such as a common block). In t h i s case, the map (̂
shows an actual address (with an unsigned segment number) for that
symbol, and the l i s t of segnents at the top of the map show that
segment as a STATIC type segnent.

Once you have begun executing an EPF, i t s imaginary addresses have been
resolved to actual addresses. You can then use the LISTJ3PF -SEGMENTS
command to display the mapping from imaginary segnent numbers in the
BIND map to actual addresses in user memory. You can then add the
offset portion of a symbol's imaginary address t o i t s corresponding
actual address in the LISTJEPF display to determine the symbol's actual
address in user memory.

For example, suppose a l ine in a BIND map reads:

Name ECB address In i t ia l PB% . . . In i t ia l I£% \
SUBRl -0002/000004 +0000/001005 . . . -0002/177400

Also, suppose a LIST_EPF -SEGMENTS command displays the following
information for the EPF containing SUBRl:

(active) <USRD3K>UN3ER>MY_JRCG.RUN
1 procedure segment: +0:4234 /
1 linkage area: -2:4377(3)/730 ^ ^

Determining Procedure Code Addresses

To determine the address of the f i r s t instruction of SUBRl, you f i r s t
examine the imaginary address in the column labeled I n i t i a l PB%. Here,
the imaginary address i s +0000/001005. Next, you look up imaginary
segment +0 in the L3ST_EPF display to determine i t s corresponding
segment number. Here, +0 corresponds t o segnent 4234. Therefore, the
actual address for the f i r s t executable instruction in SUBRl i s
4234/1005.

Determining ECB Addresses

To determine the address of the ECB of SUBRl, you examine the imaginary
address in the column labeled ECB address. Here, the imaginary address
i s -0002/000004. Next, you look up imaginary segnent -2 in the
LIST_EPF display to determine i t s corresponding segnent number. Here,
-2 corresponds t o actual address 4377/730. You add 730 to 4 (without
ever carrying into the segment number portion) to determine the actual
address of the ECB for SUBRl, 4377/734.

First Edition 9-6

MAES AND ADDRESSES

Determining Stack Frame Addresses

To determine the address of a stack frame for an active procedure, use
the DUMP_STACK command, described later in t h i s chapter.

Determining Addresses For Other Map Objects

To determine the address of other objects in a BIND map, such as common
blocks, dynamic l inks , and so on, simply use the same method used for
determining procedure code addresses (when a posi t ive imaginary segment
number i s involved) or for determining BCB addresses (when a negative
imaginary segment number i s involved).

However, for link frame addresses, read the next section carefully
before proceeding.

Determining Link Frame Addresses

Finally, l e t ' s look at the trickiest calculation. To determine the
address of tiie link frame of SDBEl, you examine the imaginary address
in the column labeled Initial IB%. Here, the imaginary address i s
-0002/177400. However, this i s not the imaginary address of the link
frame i tse l f ; i t i s , as implied by the column header, the address
placed in the Link Base (IB) when the procedure i s called. On Prime
systems, the address in the LB i s always the starting address of the
link frame minus '400 (in halfwords, without borrowing from the segment
number portion).

Therefore, when considering the link frame, you must decide whether you
wish to determine the address of the beginning of the link frame i t se l f
or the address placed in the LB when the procedure i s executed. The
address of the link frame i s useful when you want to examine the link
frame data. The address placed in the LB i s useful when you want to
examine procedure code that uses the link frame, because assembler
instructions include the '400 halfword offset; the instruction LDA
LB%+,400 references the first halfword in the link frame.

In fact, determining both values i s strai^itforward. As before,
imaginary segment -2 corresponds to address 4377/730, so you add 730 to
177400 (without carrying) to determine the address placed in the IB for
the SUBR1 procedure, 4377/330. To determine the actual address of the
beginning of the link frame for a procedure, add '400 to the IB for the
procedure (again, without carrying into the segment number). Here, the
beginning of the link frame for SQBR1 i s 4377/730.

PRIMOS commands that display memory allocation information, such as
LISTJDPF, display link frame addresses. PRIM0S commands that display
base register and instruction information, such as DUMP_STACK, VESD,
and PM, display IB addresses, which are '400 less than the actual
locations of corresponding link frames.

9-7 First Edition

ADVANCED PROGRAMyER'S GUIDE, VOLUTE I: BIND AND EPFS

USING VPSD

When you use VPSD (Virtual Prime Symbolic Debugger), the arithmetic i s
handled by the computer. The method for accessing a particular
location in memory, given i t s imaginary address and the actual
addressing corresponding to the imaginary segment number, i s :

SN acfcual-segment-number
RE actual-offset
A >imaginary-of f set

In VPSD, the SN subcommand sets the segnent number; the RE subcommand
sets the relocatable address offset, which i s particularly useful for
this sort of job; the A subcommand accesses (opens) a memory location,
and the > specifies that the value following the > i s to be treated as
relative to the value specified in the RE subcommand.

For example, to access the ECB for SUBR1, which i s at imaginary address
-0002/000004 and where imaginary segnent -2 corresponds to actual
address 4377/730, you would issue the following VPSD subcommands:

SN 4377
RE 730 /
A >4 v ^

For addresses in PRCC or IMPURE segments, which always have an
actual-offset ot 0, the method i s even simpler:

SN actual-segnent-number
A imaginary-offset

(

For example, to access the first executable instruction in SUBR1, which
begins at imaginary address +0000/001005, and where imaginary segnent
+0 corresponds to actual segment 4234, you would issue these VPSD
subcommands:

SN 4234
A 1005

To set up the IB register to access the link frame for a particular
procedure, given the imaginary address from the Initial IB% column of
the BIND map and the corresponding actual segnent number from the
LISTJEPF command display, use the following method: /

IJB actual-segnent-number actual-offset+imaginary-offset

First Edition 9-8

MAES AND ADDRESSES

The IB subcommand of VESD sets up an internal representation of the IB
register, used when you make IB-relative references in VESD (such as by
typing something like A IB%+10). Three other similar commands, EB, SB,
and XB, set up the internal copies of the other three base registers
for the same purpose. (The + is underlined to distinguish it from
dashes in the variable names; you type in the + as shown, but you
substitute actual values for the variable names.)

For example, to set up the IB for the SUBR1 procedure, whose imaginary
IB address is -0002/T77400 and where imaginary segment -2 corresponds
to actual address 4377/730, you would issue these VPSD subcommands:

LB 4377 730+177400

You would then reference the first halfword of the link frame of SGBR1
by typing:

A LB%+400

USINS THE DUMP_J5TACK COMMAND

The DUMP_STACK command is necessary for displaying the addresses of
stack frames in your program. Because it displays all of the stack
frames between the latest frame and the initial frame at command level
1, identification of which frame is the desired frame is not
necessarily straightforward. There are two ways to identify the proper
stack frame:

• By the Owner= label, if the procedure you are attempting to
locate is written in PL1/G, E77, VRP3, or Pascal

• By comparing the (IB=) field to the LXSTLEPF -SEGMENTS display,
and then to the BIND map of the appropriate EPP, which works for
a procedure written in any language

The first method requires that the procedure identify itself by setting
up its stack frame header so that it identifies its ECB, and by having
the ECB contain the name of the procedure. However, not all Prime
language translators generate code to perform this action each time a
procedure is invoked; for example, FIN and PMA do not perform the
requisite actions. In such cases, you must compare IB values.

Typically, you are searching for the stack frame of a particular
procedure. In this case, determine the Initial IB% for the procedure
according to the instructions given earlier in this chapter. Then,
look for the corresponding stack frame in a DUMP_STACK display. If it
isn't there, it means that the procedure you are searching for is not
active and therefore not on the stack.

9-9 First Edition

ADVANCED PROGRAMMSR'S GUIDE, VOLUMS I : BIND AND EPFS
(

How t o L o c a t e t h e S t a c k Frame f o r a Procedure (,

Here i s a sample d i s p l a y from t h e DDMPJ3TACK command a f t e r a u s e r
i n t e r r u p t e d a running program EPF by t y p i n g CONTROL-P:

OK, DUMP_STACK
Backward t r a c e of s t a c k from frame 7 a t 6 0 0 2 (3) / 4 0 4 6 .

STACK SEGMENT IS 6 0 0 2 .

(7) 004046: CONDITION FRAME for "QUW; returns t o 13(3)/77622.
Condition raised at 4257(3)A327; LB= 4377(0)/44424, Keys* 004000

(8) 003726: FAULT FRAM3; fault type "RXM" (0)
Fault returns to 4257(3)/l327; LB= 4377(0)/44424, keys= 004000
Fault code= 000000, fault addr=* 4257(3)/130004.
Registers a t time of fault:

Save Mask= 007755; XB= 4257(3)A042
GR0 60013 24667 14002624667 GRl 0 0 0

L,GR2 0 12 12 E,GR3 310 11766 62011766
GR4 0 0 0 Y,GR5 0 174052 174052
GR6 3466 66002 715466002 X,GR7 0 1061 1061

FARO 4 3 7 5 (3) A 2 FLR0 13 FRO 2.41041274E-39
FAR1 4377 (3)A24 FLRl 3466002 FR1 3.75089893E 543

(9) 003710: Owner= (IB= 4377(0)/44424).
Called from 4234(3)A055; returns to 4234(3)A061.

(10) 003616: Owner= SUBRl (IB= 4377(0)A77460).
Called from 41(3)A25336; returns to 41(3)A25340.

(11) 003462: Owner= (IB= 41(0)A25010).
Called from 13(3)/17354; returns to 13(3)A7376.
Proceed t o th i s activation i s prohibited.

(12) 002220: Owner= (IB= 13(0)/20256).
Called from 13(3)A5025; returns t o 13(3)A5033.

(13) 001420: Owner= (IB= 13(0)/20256).
Called from 13(3)/7224; returns t o 13(3)/7236.

(14) 000640: Owner= (IB= 13(0)A1206).
Called from 13(3)A63464; returns t o 13(3)A63470.

(15) 000632: Owner= (IB= 13(0)A63102).
Called from 4(0)A63466; returns to 4 (0) /0 .

OK,

In th i s example, the stack frames for the user's program are numbers
(9) and (10). They are easi ly distinguished because the LB segment
numbers are in the private per~user segnent range (4377 in t h i s
example), rather than in public shared PRIM3S segments (41 and 13 in

First Edition 9-10

MAES AND ADERESSES

this example). In addition. Frame (10) is easily identified as
belonging to a procedure named S0BR1 because it is a FLl/G procedure
that identifies itself by name. The stack frame for SOBKL is
600?/3616, where 6002 is the stack root (as displayed at the beginning
of the DUMP_STACK display); the stack frame for the IMA subroutine it
called, from which the QUIT$ condition was signaled via a user typing
CONTRCL-P, is 6002/3710.

However, in more complicated situations, the stack frames are often not
so easy to identify, so comparison against the IB registers displayed
for each frame are helpful.

Multiple Entrypoints With the Same IB

In a situation where more than one entrypoint has the same IB,
identification by IB is insufficient. Here, identification by ECB is
required. To do this, examine the stack frame to determine the address
of the calling instruction. Then, examine the next higher-numbered
stack frame to determine the contents of the SB and IB registers for
the calling procedure. Then, enter VPSD and examine the calling
instruction to determine the address of the ECB. Often, the calling
instruction is a PCL instruction that goes indirect through an IP in
the link frame (IB-relative); if this is the case, you must also set
up the LB in VPSD to be the IB for the calling procedure.
Occasionally, the calling instruction is a PCL through an SB-relative
IP, in which case you must set up the SB in VPSD accordingly.

However, if the PCL is XB-relative, tracking down the actual address
can be very difficult because the XB register contents can be changed
during the processing of argument templates (APs) and its contents at
the time of the call are not saved ty the PCL mechanism. In this case,
your best bet is to backtrack through the code prior to the PCL to
determine how it calculated the address for XB by looking for an EAXB
that is SB-, IB-, or IB-relative, and then reconstruct the sequence of
instructions to determine the actual XB contents used at the tine of
the call.

Example: For example, to determine the address of the ECB that
corresponds to the S0BR1 procedure, Frame (10) in the above example, we
first examine the display for Frame (10):

(10) 003616: Owners SUBRl (IB= 4377(0) A77460).
Called from 41(3)A25336; returns to 41(3)A25340.

This tells us that the instruction that called the SUBRl procedure is
at address 41/125336.

9-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EEFS /

Next, we look a t the next frame, Frame (11): (

(11) 003462: Owner* (IB= 41(0)/125010).
Called from 13(3)/17354; returns t o 13(3)A7376.

This t e l l s us that the SB for the c a l l i n g procedure i s 6002/3462 and
the IB for i t i s 41/125010. Now, we enter VESD, examine the c a l l i n g
instruct ion, and track down i t s IP to the ECB. Once we have the actual
ECB address, we use LISOLSEGMENT to show us which EPFs have linkage
data in that segment; we then use LISTLEPF -SEGMENTS on the most
l i k e l y EPF in the LISTLSEGMENT display to determine whether there i s a
matchup between the ECB address, the actual address of the l inkage data
for the EPF, and the imaginary ECB address i n the BIND map.

OK, VPSD

$SN41

$A 125336;S
4 1 / 125336 PCL% SB%+ 107,* {_
$SB 6002 3462
$A SB%+107;O ,
6 0 0 ^ 3571 4377 (CR) \^%
600V 3572 7050 / " /
$Q
OK, LISTLSEGMENT 4377 -NAME
1 Private dynamic segment,
segment access epf

4377 RWX <USRDSK>U1GER>MYLIBRARY.RUN
<SYSD3K>LIBRARIES*>SYSTEtUi3BRARY.RUN (
<USRDSK>UN3ER>M¥_JROG.RUN v

OK, LISX-EPF MY_JROG -SEGMENTS

1 Program EPF.

(act ive) <USRDSK>UN3ER>MY_JROG.RUN
1 procedure segment: +0:4235
1 l inkage area : -2 :4377(3) /7044

OK,

Hie d i f ference between an ac tua l ECB address of 4377/7050 and an ac tua l
l inkage data address of 4377/7044 i s 4 , y i e l d i n g a corresponding
imaginary ECB address of - 2 / 4 , or -000^/000004 a s shown i n t h e examples (
of SCBR1 e a r l i e r i n t h i s chapter.

(

First Edition 9-12

MAES AND ADDRESSES

Examining the Stack Frame for a Procedure Invocation

Once you know the address of a stack frame for a particular procedure
invocation, you can reenter VPSD and examine the stack frame by issuing
the following commands:

VP3D
SB stackroot offset
A SB%+n

Here, stackroot is the segnent number of the stack root, displayed ty
DUMPJSTACK at the top of its display and subsequently during the
display if the stack switches to another segnent. (Watch for the STACK
SEGPENT IS messages during the display; use the most recent message
displayed before the target stack frame.)

The offset value comes from the octal number following the stack frame
number. In the above DUMP_STACK example, the offset value for Frame
(10) is 3616.

USING EXPANDED LISTINGS

Prime language translators all have the ability to produce expanded
listings. An expanded listing is a special type of listing, obtained
ty including the -EXPLIST option on the compiler command line, that
shows the partially processed machine instructions generated as a
result of compiling each line in the source file, along with the offset
of each instruction from the beginning of the program. However, there
are several different formats of expanded listing output, and the
offset values differ in meaning, such as between FTN and PL1G. Consult
the language manual appropriate for your compiler for more information.

The listings produced ty PMA correspond, of course, to instructions in
the source program. The offsets shown are from the beginning of the
procedure code, the link frame, the stack frame, and so on.

9-13 First Edition

10
Binary Editors

This chapter describes the Binary Editor (EEB) and the Library Editor
(LIBEEB). EEB is used to create and modify object (.BIN) library
files. LIBEEB is used once a library is created to decrease linking or
loading time. Both of these programs operate on object text blocks
generated by Prime language translators such as F77, FEN, GBL, HUG,
PMA, and so on. These object-text blocks form the input to BIND, LOAD
and SEG. The term linker is used to identify all three programs.

LIBEEB

The LIBEEB program is used for editing bypass information into library
files. The linker uses the bypass information to skip an unnecessary
routine efficiently instead of reading and discarding all the unwanted
object text. Depending on the size and number of unnecessary routines
in a library, the linker may process library files up to 50 percent
faster if they have first been processed by LIBEEB.

KLBEEB is maintained as the runfile LIBEEB. SAVE in the UFD LIB. It
should be used on a library file after its creation and after each time
that the library is edited with the Binary Editor. The linker is
capable, however, of handling a library which is not, or is only
partially, processed by LIBEEB.

10-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME Is BIND AND EPFS

Because i t i s expected that LIBEDB w i l l be used fa ir ly infrequently,
the user/computer interaction i s self-explanatory. LIBEDB asks for an
input and output filename and for f i l e type. In theory, a library with
large routines w i l l link faster i f i t i s created as a Direct Access
Method (DAM) f i l e . In practice, none of the regularly used l ibrar ies
contain routines large enough to warrant creating the library as a DAM
f i l e instead of as a Sequential Access Method (SAM) f i l e .

ED3

The command format for ED3 i s :

input-file
EEB { -ASR

-PER
[output-file]

Both the input and output f i l e may be pathnames. The input f i l e should
be an existing library or the binary output of a Prime language
translator. The output f i l e i s optional; i f specified, a f i l e of that
name i s created i f none exists. -ASR or -PTR instead of a f i l e on the
command line specifies a user terminal or paper-tape reader/punch,
respectively. If these are not included, a PRIMDS f i l e i s assumed.
(-ASR and -PTR are tremendously obsolete options.)

EDB displays ENTER, and then waits for user commands.

Operation

EDB maintains a pointer to the input file. When ED3 is initialized, or
after a TOP or NEWINF subcommand, the pointer is at the top of the
input file. The pointer can be moved ty the FIND subcommand to the
start of a module. A module is identified by its subprogram or
entry-point name. After a COPY subcommand (which copies blocks from
the input to output file), the pointer is positioned to the module
following the module copied.

First Edition 10-2

BINARY EDITORS

Subcommand Summary

ECB responds to the following subcommands, listed in alphabetical
order. Subcommands may be abbreviated to the underlined letters.

Note

The keyword ALL, used in the COPY and FIND subcommands, is not
specially treated by ED3; if the external symbol name ALL is
encountered in the input file, the COPY or FIND operation is
terminated. This distinction is important only for input files
that contain an external symbol name of ALL; in such a case,
use seme random name instead of ALL to COPY or FIND all modules
in an input file, such as FDSA. The ALL keyword is essentially
an ad hoc standard.

^ BRIEF

Inhibits the display of subroutine names and entrypoints as they are
encountered in the input f i le . (See also TERSE and VERIFY.)

COPY
name
ALL
<RFL>
<SEL>

Copies to the output f i le all main prograns and subroutines from the
pointer up to (but not including) the subroutine called name or
containing name as an entrypoint. If name i s not encountered or if
COPY ALL is specified, EDB copies to the end of the input f i le and
displays .BOTTOM, on the terminal. EDB moves the pointer past the
last copied item.

<RFL> and <SFL> are special keywords that search for a resefc-force-load
or set-force-load flag block.

^ FIND I m

Moves the pointer up to the module of the input file containing a
subroutine called name or containing name as an entrypoint without
copying the intervening modules to the output file. If name is not

-^ found, ED3 moves the pointer to the end of the input file and 3isplays
f ^ .BOTTOM, on the terminal.

10-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS
(

In VERIBY mode, the FIND ALL command i s useful for displaying a l l (
subroutines and entry names in the input f i l e .

<RFL> and <SFL> are special keywords that search for a reset-force-load
or set-force-load flag block.

• INSERT pathname

Copies a l l modules of pathname to the output f i l e . The pointer to the
original input f i l e i s unchanged.

• NEWINF pathname

Closes the current input f i l e and opens pathname as the new input f i l e .
The pointer i s positioned to the beginning of pathname.

Closes the current output f i l e and opens pathname as the new output
f i l e .

• QUIT

Closes a l l f i l e s and ex i t s t o ERIMDS.

• REPLAC name pathname

Replaces the object module containing name as an entrypoint by all
modules of pathname.

• RFL

Writes a reset-force-load flag block t o the output f i l e . Typically,
a l l l ibraries begin with an RFL. The RFL block places a linker in
library mode; while in library mode, only those modules that are
referenced are linked. RFL mode i s in e f fect unti l the linker
encounters an SFL block.

(

(.

First Edition 10-4

BINARY EDITORS

Note

Because an REL block affects other files linked after the
object file containing the RFL block, it is important that any
object file containing an RFL block contain an SFL block at the
end of the file. See the SFL command.

• SFL

Writes a set-force-load flag block to the output f i l e . This block
places a linker in force-load mode; a l l subsequent modules are linked,
whether or not they are called. SEL mode i s in effect until the linker
encounters an REL block. A library f i l e should be terminated by an SFL
block.

^ TERSE

Places the editor into TERSE mode. While in TERSE mode, EEB displays
only the first entrypoint name of each module encountered. (See also
BRIEF and VERIFY.)

• TOP

Moves the pointer to the top of the input file.

• VERIFY

Places EEB into VERIFY mode. All subroutine names and entrypoints, as
they are encountered by EEB, are displayed on the terminal. EEB is
initialized in the VERIFY mode. (See also BRIEF and TERSE.)

Obsolete Commands

The following commands are outmoded but are included for the sake of
compatibility:

• J!?.

Writes an end-of-tape mark on the output f i l e ('223, '223 on paper
tape; 0 word on disk). Writing an ET to disk causes the linker to
ignore the remainder of the f i l e .

10-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VQLDME I: BIND AND EPFS

^ GENET [G]

Copies the subroutine to which the pointer i s currently positioned and
follows i t with an end-of-tape mark. The pointer moves t o the next
subroutine. The optional l e t ter G specif ies a global copy; a l l
subroutines from the current position of the pointer are copied, each
followed fcy an end-of-tape mark. When the bottom of the input f i l e i s
encountered, EDB displays .BOTTOM, on the terminal.

• OMTTET [G]

Copies the subroutine to which the binary location pointer is currently
positioned. The pointer moves to the next subroutine. The optional
letter G specifies a global copy; all subroutines from the current
position of the pointer are copied. When the bottom of the input file
is encountered, EDB displays .BOTTOM, on the terminal.

EDB Error Messages

EDB displays ENTER to show that it is ready to accept commands. Most
errors in command input cause EDB to display a question mark (?) •
Other messages are listed below.

• BAD OBJECT FILE (FRD3IN)

Usually indicates that you have specified a source f i l e , rather than an
object (.BIN) f i l e , as the input f i l e . EDB attempts t o continue
processing by ignoring the remainder of the input f i l e .

• BAD PARAMETERS (EDB)

Indicates an error while locating an input file, an output file, or a
replace file; or, indicates an erroneous usage of EDB. EDB
terminates.

• ERROR WHILE WRITING

A file system error occurred while EDB was trying to write the contents
of an object file. EDB terminates.

First Edition 10-6

BINARY EDITORS

EXAMPLES

Creating a Library of Subroutines

The following example c rea tes a l i b r a ry from the f i l e s E1LEL.BIN,
FILE2.BINr FILE3.BIN, and FILB4.BIN. Each f i l e contains a s ing le
module, although FILEUBIN and FILE2.BIN contain mul t ip le ent rypoints .
The example shows the EEB commands t o l i s t the entrypoints of each
f i l e , plus the commands necessary t o combine them i n t o a l i b r a r y f i l e ,
LIBEXP.BIN.

OK, EEB FILE3..BIN
[EEB rev 19.4]
ENTER, FIND ALL
ENT1A ENT1B
ENT1C
.BOTTOM.
ENTER, NEWINF FILE2.BIN
ENTER, FIND ALL
ENT2D ENT2E

.BOTTOM.
ENTER, NEWINF FILE3.BIN
ENTER, FIND ALL
ENT3G
.BOTTOM.
ENTER, NEWINF FILE4.BIN
ENTER, FIND ALL
ENT4H
.BOTTOM.
ENTER, OPEN LIBEXP.BIN
ENTER, NEWINF FILEl.BIN
ENTER, RFL
ENTER, COPY ALL
ENT1A ENT1B
ENT1C
.BOTTOM.
ENTER, INSERT FILE?. .BIN
ENTER, INSERT FILE3.BIN
ENTER, INSERT FILE4.BIN
ENTER, SFL
ENTER, QUIT
OK,

After a library is created, LIBEEB can be run on it to speed its
linking time.

10-7 First Edition

ADVANCED IRCGRAMJER'S GUIDE, VOLUME I: BIND AND EPFS

Displaying Entrypoints

Notice the difference between the terminal output in VERIFY and TERSE
modes. ENT5A and ENT6A are both entrypoints of the module in the f i l e
PILE5.BIN; ENT5A i s the name of the procedure, ENT6A i s the name of an
alternate entrypoint t o the ENT5A procedure. In TERSE mode, only ENT6A
i s l i s t e d . (The compiler in t h i s case emits the external name for the
alternate entrypoint before i t emits the external name for the
procedure; therefore, ENT6A i s l i s t e d f i r s t .) For example:

OK, EDB ETLE5.BIN
[EEB rev 19.4]
ENTER, FIND ALL
ENT6A ENT5A

.BOTTOM. (
ENTER, TOP
ENTER, TERSE
ENTER, FIND ALL
ENT6A
.BOTTOM.
ENTER, QOIT
OK,

Replacing an Object Module i n the Library '

The l i b r a r y f i l e created above, L3BEXP.BIN, i s e d i t e d t o replace the
module containing entry point ENT3G with the module i n NFILE3.BIN
containing entry po in t s ENT3F and ENT3G. The output f i l e i s
LIBNEW.BIN.

OK, ED3 NFILE3.BIN (
[EDB rev 19.4] v

ENTER, FIND ALL
ENT3F ENT3G

.BOTTOM.
ENTER, QUIT
OK, ED3 LIBEXP.BIN L1BNEW.BIN
[ED3 r e v 1 9 . 4]
ENTER, REPLflC ENT3G NFILE3.BIN
<RFL> ENT1A
ENT1B ENTIC
ENT2D ENT2E
ENT3G
ENTER, COPY ALL
ENT4H <SFL> ,

.BOTTOM.
ENTER, QUIT

First Edition 10-8

BINARY EDITORS

• OK, EDB LIBNBW.BIN
f ^ [ED3 rev 19 .4]

ENTER, FIND ALL
<RPL> ENT1A
ENT1B ENT1C
ENT2D ENT2E
ENT3F ENT3G
ENT4H <SFL>

.BOTTOM.
ENTER, QUTT
OK,

Sample Use of LIBEDB

In t h i s example, the f i l e LIBEXP.BIN i s processed by LIBEDB, producing
a SAM f i l e named FAST_LIBEXP.BIN.

OK, RESUME LIB>LIBEDB
[LIBEDB rev 19 .0]

SOURCE FILE, DESTINATION FILE, PARAMETER
WHERE: PARAMETER - 0 - DESTINATION FILE SAM

PARAMETER = 2000 - DESTINATIDN FILE DAM
$ LIBEXP.BIN, FAST_LIBEXP.BIN, 0
OK,

10-9 First Edition

APPENDIX

A
Converting Programs

That Use Register
Settings

Some exist ing static-mode programs use register sett ings t o se lect
options for the program. Register sett ings s e t the i n i t i a l values of
R-mode and V-mode registers for static-mode programs by sett ing values
in the RVBC (Register VBCtor) for the user. (See the FRIM3S Commands
Reference Guide for more information on RVBC and register set t ings .)

While using register sett ings to select program options i s obsolete,
having been replaced fcy the more leg ible and f l ex ib le command l i n e
options (such as -LISTINS, -XREF, and so on), register sett ings do
offer the advantage of being able to change the default options for a
program without having t o recompile or reload i t .

For example, to change the register sett ings for a program named NRSL,
you might type:

RESTORE NRSL. SAVE
SAVE NRSL.SAVE 3/14520

Ri is command sequence would change the i n i t i a l value of the A register
for NRSL from i t s original value of 120 to 14520. This might have the
effect of enabling more options ty default; users subsequently
invoking the program would not have t o specify those options.

A-l First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Converting such a program to an EPF might seem d i f f i cu l t a t f i r s t ,
because t h i s feature i s not directly supplied fcy BIND and EPFs.
However, a feature ex i s t s that i s easier to use with BIND and EPFs and
that may be a suitable replacement. This appendix shows how t o use
t h i s feature to provide a somewhat compatible interface for sett ing the
in i t ia l values of registers.

First, the appendix provides a short discussion of how the present
static-mode program uses the init ial values of registers. Then, using
that model, the appendix describes how to accomplish the same thing
using BIND and EPFs*

HOW THE STATIC-MODE PROGRAM WORKS

The key to the use of init ial values for registers by a static-mode
program i s that i t s f irst instructions that reference the appropriate
registers must not init ial ize them before using them, because the
command processor has already initialized them. Their values are
stored in the first nine halfWords of the static-mode runfile
containing the program. The first two of these halfwords are the
beginning and ending addresses for the program's memory image; the
third halfword i s the starting location of the program (the init ial
value of the P register); and the next four halfijords contain the
init ia l values for the A, B, X, and K registers. The remaining two
halfwords are undefined and should be 0.

Therefore, the main entrypoint of a static-mode program that uti l izes
the init ia l values of one or more registers usually begins with a STA,
SHi, or STX instruction if written in PMA, or with a call to the GETA
or GETL subroutine i f written in FTN. (GETA stores the value in the A
register into the INTEGER*2 argument passed to i t , while GETL stores
the value in the L register, which i s the A and B registers
concatenated, into the INTBGER*4 argument passed to i t .)

Then, the main entrypoint uses the values retrieved from the registers
as the ini t ia l , or default, values for option settings in the program.
Typically, the program then reads options from the command line,
recording any options i t finds there on top of the init ial option
settings. (Thus, command line options, when specified, override the
init ial values.)

In addition, the user may use register settings on the command line
(such as RESUME NRSL 3/10120) instead of command line options. The use
of this obsolete method of specifying program options i s guaranteed to
confuse and bewilder anybody who tries to understand the command f i l e
written by the user to invoke the program. (Such a user rarely builds
a CPL program for the purpose.) These register settings, when
specified on the command line, override the settings in the RVEC for
the static-mode program image, and hence replace the init ial values for
the registers.

First Edition A-2

(

CONVERTING PROGRAMS -THAT USE REGISTER SETTINGS

HOW TO ACHIEVE THIS FUNCTIONALITY IN AN EPF

To make the default options for an EEP tai lorable on a per-system
basis , you build a CPL program that replaces the RESUME/SAVE command
sequence shown a t the beginning of th i s appendix; in addition, you
convert your static-mode program by changing the way i t obtains the
init ial values of the registers.

The CPL Program

The CPL program performs the following tasks:

1. It determines the default options desired by the user, either
by accepting the baroque register settings used for the
static-mode version of the program or by reading command line
options typed by the user.

2. It compiles a small FTN subroutine called NGETA or NGETL that
stores the numeric equivalents to the desired default options
into the passed argument, either an INTEGER*2 (NGETA) or an
INTEGER*4 (NGETL) argument.

3 . I t invokes BIND and l inks the EPF using the subcommand LOAD
program. EDN.

4 . I t uses the RELOAD subcommand t o relink the NGETA or NGETL
subroutine just compiled into the EPF just l inked.

5. It uses the FILE subcommand to write to disk the new version of
the EPF with modified default options.

Converting the Static-mode Program

You also convert your static-mode program to obtain the init ia l values
for the registers by calling a subroutine named NGETA or NGETL,
depending upon whether the program uses the in i t ia l value for the A
register or for both the A register and the B register.

Then, you write a subroutine named NGETA or NGETL in FTN that you link
with your program. The subroutine sets the passed number to the
standard default option settings as numbers and returns to the caller.

The Result

The result you have is a program EPF that obtains its initial register
^^ values by calling NGETA or NGETL, an internal subroutine that returns
f^ standard values for the registers in tiie argument provided. The rest

of your program operates as it did before.

A-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPPS
(

If someone wishes to tailor your program for their needs, they need ^j
only invoke the CPL program you have supplied. It obtains the desired
default options from the user, and compiles a new version of N3ETA or
NGETL that supplies the new initial values instead of the standard
values. The CPL program then relinks the newly compiled NGETA or NGETL
module into the existing EPF, and now that program EPP uses the new
defaults.

A Sample Case

A sample CPL program that performs this conversion, along with the
corresponding copy of N3ETA and NGETL, follows.

&args progttree; areg:oct=120

&if [null %prog%] &then &return 1 Smessage Requires program name.

&if [index %prog% .RUN] *- [calc [length %prog%] - 3] "
&then &s prog := %prog%.RUN

&data ed
SUBROUTINE N3ETA(I)
INTBGER*2 I /
I=:%areg% v^%
RETURN •'
END

FILE NGETA. PIN
&end

f t n ngeta -dynm -dclvar

bind - load %prog% -re load ngeta (

delete ngeta.bin

T n e oct^l20 in the f i r s t l ine simply s e t s the defaul t value for the
i n i t i a l A-register s e t t i ng i f the user does not specify i t . I t should
be the same value with which you sh ip the program EPP.

As you can see from the above sample CPL program, the sample NGETA, PIN
module i s qu i t e simple:

SUBROUTINE NGETA (I)
INTEGER*2 I
1= :value ,
RETURN
END

F i r s t Edition A-4

CONVERTING PROGRAMS THAT USE REGISTER SETTINGS

Here, value is the standard initial A-register value. The NGETL.BTN
module is as follows:

SUBROUTINE NGETL(L)
INTEGER*2 L(2)
L(l)=:valuel
L(2)=:value2
RETURN
END

Here, valuel and value2 are the standard initial A-register and
B-register values, respectively. If your program expects an initial
value for the B register, you should use the copy of NGETL shown above
and modify the CPL program shown earlier accordingly. (For example, it
should take two octal arguments, one for the A register and one for the
B register.)

If the Main Entrypoint Is a IMA Program

If the main entrypoint of your program is written in IMA, then you must
change the STA or STL instruction at the beginning to a CALL NGETA or
CALL NGETL followed by AP INTILPBGLSETTING, SL (where INTT_pE{lJ5ETTING
was the target of the STA or STL instruction). If the program also
expects an initial value for the X register, add a third octal argument
to the CPL program and a second argument to NGETL to pass the X
register value, and call NGETL with a second argument from the IMA
module that stores the value returned in the second argument in the
destination of the original STX instruction.

If the PMA program does not start off with STA, STL, or STX
instructions, but instead uses instructions that test the registers in
various ways (such as SAR, SAS, BBQ, CAS, and so on), simply insert the
call to NGETA or NGETL in front of the instructions, then code a LDA,
LDL, or LDX instruction to load the registers with the initial values
retrieved from NGETA or NGETL.

A-5 First Edition

INDEX

Index

y^^\

Addresses,
actual, 1-10, 9-2
ECB in the BIND map, 9-6
form of, 9-2
imaginary, 1-10, 1-14, 9-2
link frame in the BIND map,

9-7
LIST_EPP command, 9-3
mapping of, 9-1
offsets in, 9-2
prooedure code in the BIND map,

9-6
segment numbers in, 9-2
stack frame in DUMP_STACK

command, 9-9

Arguments to program EPFs, 1-16

B

.BIN file, 3-6, 3-7

Binary editors, 10-1

BIND, 1-2, 1-8
benefits of using, 1-9
DYNT subcommand, 5-5

BIND (continued)
ENTRYNAMB subcommand, 3-15
entrypoint subcommand, 6-8
initialization of static data,

1-19
LIBRARY subcommand, 3-11
linking object f i l e s , 3-7
MAIN subcommand, 3-15, 5-5
MAP subcommand, 9-5
RESCLVE_DEFERRED_OOMMDN

subcommand, 3-15
SYMBOL subcommand, 3-11, 8-2,
8-4

treatment of common area,
3-11, 3-15

treatment of IPs, 3-10, 3-11
use of segment numbers, 3-10

BIND map, 9-5 to 9-7
determining ECB addresses,
determining link frame
addresses, 9-7

determining procedure code
addresses, 9-6

Building shared programs with
SEG, 1-8

9-6

X-l First Edition

ADVANCED PRCGRAMER'S GUIDE, VOLUVE I : BIND AND EPES
(

Command level breadth, 5-3

Common area, 3-10, 8-1
defining a shared, 8-2
initialization of, 3-11
treatment of by BIND, 3-11,
3-15

Common blocks and dynamic link,
2-4

CP$ subroutine, 3-16

CPL functions and program EPFs,
1-16

Dynamic link (continued)
to entry points in PRIM3S,
3-22

to entrypoints in Application
Library, 3-24

to entrypoints in PRIMDS, 3-26
to static-mode libraries, 3-28

Dynamic linking mechanism, 1-3,
2-1, 3-6, 3-19

advantages, 2-1

Dynamic memory, 1-9
deallocation of, 3-32
in EPFs, 3-3

DYNT, (See also Dynamic link)
as a subcommand of BIND, 5-5

DATA segnent, 3-7, 3-10, 3-19
access to, 3-16

Deallocation of dynamic memory,
3-32

Deallocation of library EPFs,
3-32

Debugging an EPF,
BIND command, 1-18
DBG command, 3-35
DUMP_STACK command, 1-18
LIST_EPF command, 1-18
other useful commands, 1-19
setting breakpoints, 1-18
VPSD command, 1-18, 9-6

Debugging information in EPFs,
3-3, 3-7

Displaying common area addresses,
3-15

DUMP_STACK command, 9-9

Dynamic link, 5-5
common blocks and, 2-4
definition of, 2-2
sample session, 2-4
snapping, 2-3, 3-21

E

ECB (entry control block), 1-3
information contained in, 1-4

EDB binary editor, 10-2 to 10-6
error messages, 10-5
obsolete commands, 10-5
subcommands, 10-3

Entry control block (See ECB)

ENTRY$.SR, 1-3

ENTRYNAME,
as a subcommand of BIND, 3-15

Entrypoint, 2-2
as a subcommand of BIND, 6-8
determining, for library EPFs,
6-5

invocation, 3-19
main, of a program EPF, 5-4,
5-5

modifying the search list of,
6-12, 6-13

reserved names, 6-5
subroutine, declaring, 6-8

First Edition X-2

Index

Entrypoint search list, 6-12,
6-13, 6-32

advanced use of, 6-37
default, 6-32
examining, 6-38

EPF, (See also Library EPF;
Process-class library EPF;
Program EPF; Program-class
library EPF)

benefits of, 1-9
cache, 1-18, 3-34
coding guidelines for, 7-1
copies of link frame, 3-4
debugging information, 3-3
debugging of, 1-18, 3-35
definition of, 1-2
dynamic memory, 3-3
information contained in, 1-18
invocation by CP$ subroutine,
3-16

invocation by EPF$RUN
subroutine, 3-16

invocation, forms of, 3-16
library, 1-3
life of an, 3-5 to 3-34
linkage text, 3-2
mapped, 3-16
mechanism, 3-1
multiple invocations of, 3-34
new versions, 1-2, 3-30, 3-34
old versions, 1-2, 3-34
organization of, 3-2
procedure code, 3-2
program, 1-3
reason for, 1-4
removing from memory, 1-16,

3-6, 3-30
restrictions on writing in PMA,
7-10 to 7-16

.RPn suffix, 1-2

.HJN suffix, 1-2
running a remote, 3-36
simultaneous use of, 3-35
stack space, 3-3
(See also Stack frame)
static information and, 4-7
suspending and restarting,
1-17

termination of, 3-6, 3-30,
3-31

types of, 1-3
unmapping, 3-34

EPF (continued)
writing in high-level

languages, 7-1
writing in PMA, 7-2

EPF generation and use,
phase 1 (compilation or
assembly), 3-7

phase 10 (removal), 3-33
phase 2 (linking), 3-7
phase 3 (invocation), 3-15
phase 4 (mapping), 3-16
phase 5 (linkage allocation),
3-16

phase 6 (linkage
initialization), 3-19

phase 7 (entrypoint
invocation), 3-19

phase 8 (dynamic links
snapped), 3-21

phase 9 (termination), 3-30
phases in, 3-6
stages in, 3-5

EPF$ftLLC subroutine, 3-6, 3-16

EPF$DEL subroutine, 3-6, 3-33

EPF$INTT subroutine, 3-6, 3-19

EPF$INVK subroutine, 3-6, 3-19

EPF$MAP subroutine, 3-6, 3-16

EPF$FDN subroutine, 3-5, 3-16

Executable program format (See
EPF)

Expanded listings, 9-13

External linkage information,
3-7

Faulted IP, 1-3, 2-2, 3-11,
3-19, 3-21, 6-17

how to avoid sharing, 4-10
sharing of, 4-9

X-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUMES I: BIND AND EPPS

Freeing segments of R-mode
programs, 1-7

I-mode programs, 1-5

Imaginary addresses and EPF
sharing, 1-14

Impure code, 1-13
separation of pure code from,
1-12, 7-2

IMPURE segnent, 3-7, 3-10, 3-19
access to, 3-16

Indirect pointer (See IP)

Initialization,
of variables, 1-19
shared data, 8-3, 8-4

Invoking an EPP, 1-3, 3-15, 5-1,
5-2

subroutines for, 3-5

IP (indirect pointer), 1-3, 3-7
faulted, 1-3, 2-2, 3-11, 3-21,
6-17

how to avoid sharing faulted,
4-10

resolution of at runtime, 3-10
sharing of faulted, 4-9
treatment of by BIND, 3-10,
3-11

Library EPF, 1-3, 1-9
assembling the PMA entrypoint
file for, 6-10

building a PMA entrypoint file
for, 6-8, 6-9

choosing the right type of,
6-4, 6-14, 6-15

coding a subroutine for, 6-4
compiling a subroutine for,
6-4

deallocation of, 3-32
definition of, 6-2
determining class requirements

of, 6-29
determining entrypoints of,
6-4

installing a library file,
6-11

installing the library EPF,
6-11

invoking, 1-3
linking subroutines of, 6-7
modifying the entrypoint search

l i s t , 6-12
process-class, 3-32, 3-33
program's view of, 6-4
program-class, 3-32, 3-33
programmer's view of, 6-2
restriction on class mixing of,

6-16
restriction on use of language

I/O, 6-17
steps in building, 6-2, 6-4 to

6-13
storage allocation issues,

6-41
storing data in linkage area

of, 6-17
using DBG on, 6-30, 6-31
using EDB to generate a library

f i l e , 6-10

IB (See Linkage base)

LIBED3 binary editor, 10-1

Library EPF mechanism, 6-39

Limits on calling program EPFs,
5-3

LIBRARY,
as a subcommand of BIND, 3-11
external references resolved
by, 3-11

Link frame, 3-4, 3-5, 3-10

Linkage,
area, 3-32
area, storing data in, 6-17,
6-18

base, 3-4

First Edition X-4

Index

Linkage (continued)
fault, 2-4
initialization, 3-19, 6-18
text, 3-7
text, in EPFs, 3-2
text, in subroutines, 3-4

Linking,
loaders, history of, 1-4
purpose of, 3-7
utilities, 1-2

LISXJJPF command, 9-3

LISTUSEGMENT command, 9-5

LOAD, 1-2, 1-4

M

MAIN,
as a subcommand of BIND, 3-15,
5-5

MAP,
as a subcommand of BIND, 9-5

Mapping an EPF, 3-16

Maps and addresses, 9-1

Memory,
allocation of, 1-10, 1-11
dynamic, 1-9
static, 1-9

Multiple invocations of an EPF,
3-34

Object file, 3-7

PB (See Procedure base)

PCL ins t ruc t ion , 3-4, 3-7, 3-19

PMA,
r e s t r i c t i o n s for EPF execution,

7-10
wri t ing EPFs in , 7-2 to 7-10

PROC segment, 3-7, 3-10
access t o , 3-15

Procedure,
base, 3-4
code in EPFs, 3-2
code in subroutines, 3-4
frame, 3-4
main, of a program EPF, 5-4
management, 3-4
t ex t , 3-7

Process-class l i b r a r y EPF, 3-32,
3-33, 6-41

choice of, 6-14
l ink sequence for , 6-7
r e s t r i c t i o n s on use of, 6-14
using for shared da ta , 8-5

Program,
I-mode, 1-5
Rr-mode, 1-4, 1-5
S-mode, 1-5
static-mode, 1-4
V-mode, 1-5

Program EPF, 1-3, 1-9
arguments t o , 1-16, 5-4
command l i n e preprocessing,

1-17
CPL functions, 1-16
data returned from, 5^3
data supplied t o , 5-3
def in i t ion of, 5-1
invoking, 1-3, 5 - 1 , 5-2
invoking program's view of,

5-2
l imi t s on c a l l i n g , 5-3
main entrypoint of, 5-4, 7-2
main procedure of, 5-4
programmer's view of, 5-1
stacking of, 1-17
u s e r ' s view of, 5-2
wr i t ing the main program, 5-4

Program-class l i b r a r y EPF, 3-32,
3-33, 6-40

choice of, 6-14
l ink sequence fo r , 6-7

X-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, TOLUME I: BIND AND EPPS

PRTN instruction, 3-4

Pure code,
separation of impure code from,

1-12, 7-2
sharing of, 1-13

R mode, 1-4

R-mode programs, 1-4, 1-5
freeing segnents of, 1-7

Removal of EPPs, 1-16, 3-30
process-class library, 3-33
program EPP, 3-33
program-class library, 3-33

Replacing static-mode l ibraries ,
3-30

Reserved entrypoint name l i s t ,
6-6

Reserved entrypoint names, 6-5
l i s t of, 6-6

RESOLVEJDEFERRED COMMON,
a s a subcommand of BIND, 3-15
t o d i sp lay common area address,

3-15

.RPn suffix, 1-2

.HJN suffix, 1-2

Running a remote EPF, 3-36

S mode, 1-5

SB (See Stack base)

Search rule, 1-3, 6-12, 6-33 to
6-36

SEG, 1-2, 1-4
building shared programs, 1-8
for invoking V- or I-mode

programs, 1-7
for shared procedure segnents,
1-8

generating static-mode images,
1-8

Segment access,
to DATA segments, 3-16
to IMPURE segments, 3-16
to PROC segnents, 3-15

Segment number,
for IMPURE and DATA segment,

9-3
for PURE segnent, 9-3
in addresses, 9-2
sign of, 9-2, 9-3
use of by BIND, 3-10

Segments,
shared system-wide, 1-8, 8-3
static, 8-3

Separation of pure and impure
code, 1-13, 1-15

Shared applications, (See also
Shared programs)

effect of EPFs on existing,
4-8

Shared data, 8-1 to 8-7
determining the address of,

8-2
how to update atcmically, 8-7,

8-8
initializing, 8-3, 8-4
PMA subroutines for updating,

8-9 to 8-11
process-wide, 8-1
system-wide, 8-1
using a process-class Library

EPF for, 8-5

Shared programs,
deleting old versions, 1-16
installing new versions, 1-8,

1-16
using SEG to build, 1-8

Shared system-wide segnents, 1-8

First Edition X-€

Index

Sharing faulted IPs, 4-9
how to avoid, 4-10

Sharing of pure code, 1-13

Simultaneous use of an EPF, 3-35

Snapping dynamic links, 2-3,
3-21

Stack base, 3-4

Stack frame, 3-4
addresses of in DUMP_ST£CK
command, 9-9

locating procedure, 9-10

Stack header, 3-4

Stack space in EPFs, 3-3

Stack space in subroutines, 3-4

Stacking program EPFs, 1-17

Static data, 3-7

Static information and EPFs,
command line information, 4-7
error information, 4-7

S t a t i c memory, 1-9

Static-mode appl ica t ions , (See
a l so Static-mode progran)

conversion s t ra tegy , 4-1
r e l a t i on of EPFs t o , 4-1
r e s t r i c t i o n on EPF use of, 4-2
suspending and continuing, 4-2

Static-mode l i b r a r y , 3-28
dynamic l ink t o , 3-28
replacing, 3-30
r e s t r i c t i o n on EPF use of, 4-4

Static-mode program, 1-5
(See a l so Static-mode

applicat ions)
c h a r a c t e r i s t i c s of, 1-5 to 1-7

Subroutine, (See a l so l i b r a r y
EPF)

converting nonreentrant t o
reen t ran t , 6-21 to 6-25

Subroutine (continued)
determining c l a s s requirements

of, 6-15, 6-16
determining the use of s t a t i c

data by, 6-17, 6-18
linkage t e x t , 3-4
nonreentrant process-c lass ,

6-20
optimizing conversion approach

t o , 6-25 to 6-28
organization of, 3-4
procedure code, 3-4
process-c lass , 6-15
program-class, 6-15
stack space, 3-4
s tor ing data in linkage area

of, 6-18

Subroutine libraries, 2-1
types of, 2-2

Subroutine not found condition,
2-4

Subroutines,
dynamic linking of, 2-1

Subroutines for invoking EPFs,
3-5

SYMBOL,
as a subcommand of BIND, 3-11,
8-2, 8-4

to locate common areas, 3-11

Terminating an EPF, 3-6, 3-30,
3-31

Types of EPFs, 1-3

U

Unmapping an EPF, 3-34

X-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I : BIND AND EPPS

V .

V-mode programs, 1-5

VPSD command, 1-18, 9-8

(

C

(

(

First Edition X-8

SURVEY

READER RESPONSE FORM

DOC10055-1LA Advanced Programmer's Guide, Volume I First Edition

Your feedback w i l l help us continue to inprove tiie quality, accuracy,
and organization of bur user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple _ a b o u t right too technical

Technical accuracy: poor ___average very good

Examples: too many about right too few

Illustrations: too many __about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing l i s t for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

Address:

.Zip:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

READER RESPONSE FORM

DOC10055-1LA Advanced Programmers Guide, Volume I First Edition

Your feedback wil l help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level : too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

I l lus t ra t ions : too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you l ike to be on a mailing l i s t for Prime's current
documentation catalog and ordering information? yes no

Name: Position:

Company:

/0^ Address:

.Zip:

(

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

RIME •]»

Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC 10055-1 LA Advanced Programmers Guide, Volume I First Edition

Your feedback wil l help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: .too simple about right too technical

Technical accuracy: poor average very good

Examples: .too many about right .too few

Illustrations: .too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing l i s t for Prime's current
documentation catalog and ordering information? yes

Name: Position:

Company:

Address: .

Zip:

(

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Pubiications
BldglOB
Prime Park, Natick, Ma. 01760

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	About This Book
	ix
	x
	xi
	Chapter 1
	Introduction to BIND and EPFs
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	Chapter 2
	The Dynamic Linking Mechanism
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	Chapter 3
	The EPF Mechanism
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	Chapter 4
	EPFs and Static-mode Applications
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	Chapter 5
	Program EPFs
	5-1
	5-2
	5-3
	5-4
	5-5
	Chapter 6
	Library EPFs
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	Chapter 7
	Coding Guidelines for EPFs
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	Chapter 8
	Shared Data
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	Chapter 9
	Maps and Addresses
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	Chapter 10
	Binary Editors
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	Appendix
	Appendix A
	Converting Programs That Use Register Settings
	A-1
	A-2
	A-3
	A-4
	A-5
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	Survey
	
	
	
	
	
	

